
Safe && Portable
Data Structure Design

(in Rust)

Code and Supply Lighting Talk, Dec 2021

Memory Safety:
How are we doing?

The Immortal Vulnerability Class

● Memory safety: exploit might mean turing-complete control of target process!
○ E.g. ROP chain for a heap buffer overflow

● 2012: research surveyed 30 years of failed C/C++ memory protections
○ “SoK: Eternal War in Memory” by Szekeres et. al. (2012) [1]

● 2021: "Out-of-bounds Write" is #1 vulnerability of the year
○ Per the MITRE CWE Top 25 Most Dangerous Software Weaknesses [2]

[1] https://people.eecs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf
[2] https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

https://people.eecs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html

Memory Safety:
We can do better!

About This Talk

● Designing a Rust data structure library…

● ...that can run, w/o an OS, on any embedded device Rust targets…
○ E.g. #![no_std]

● ...and in which there is provable* absence of memory corruption bugs
○ E.g. #![forbid(unsafe_code)]
○ “Computer Scientist proves safety claims of the programming language Rust” [1]

* == Barring soundness bug in the compiler or an unsafe DLL/core::function, etc. No absolute security!

[1] https://www.eurekalert.org/news-releases/610682

https://www.eurekalert.org/news-releases/610682

Alternative to std::collections::{BTreeMap, BTreeSet}

● https://github.com/tnballo/scapegoat, MIT Licence OSS
● BTreeMap has 32 APIs on nightly
● SgMap has 27 of those 32 on stable + 4 fallible API variants + 4 misc

https://github.com/tnballo/scapegoat

How do ordered sets/maps work “under-the-hood”?

● Typically* implemented with a self-balancing search tree
○ Rust std: BTree
○ C++ STL: Red/Black Tree
○ Java.util: Red/Black Tree

● Retrieval is usually O(log n)

● Running example binary tree on right

* == CPython’s OrderedDict is a link list?!

The Problem with Graphs/Trees in Rust

● On the heap, our example tree looks like this (owning references in green):

The Problem with Graphs/Trees in Rust

● If our algorithm also requires parent references (red), we have a problem!

3 Solutions: the Good, the Bad, and the Ugly

● Bad: C-style raw pointers (unsafe keyword)
○ Can read/write arbitrary memory, all bets are off!

● Ugly: Rc<RefCell<T>> (interior mutability with smart pointers)
○ Must take a runtime check penalty, it’s lipstick over UnsafeCell.

● Good: arena allocation (next slide)
○ May still need runtime checks, but portability is unlocked and code is safe/clean/maintainable.
○ Arena allocation is not unique to Rust, but was demonstrated in Rust as early as 2015 [1]

[1] http://smallcultfollowing.com/babysteps/blog/2015/04/06/modeling-graphs-in-rust-using-vector-indices

http://smallcultfollowing.com/babysteps/blog/2015/04/06/modeling-graphs-in-rust-using-vector-indices

The Safe Solution: Arena Allocation

● Store tree as a vector of elements, use indexes instead of pointers:

● Scanning this storage left to right, we have a logical tree:
○ Leaf 1: no children, parent at index 2
○ Leaf 4: no children, parent at index 2
○ Root 2: left child at index 0, right child at index 1

The Safe Solution: Arena Allocation

● Portability: know max capacity? Pre-allocate on the stack, no heap use!
○ Use fixed-size stack array instead of vector

● Safety: no raw pointers, no interior mutability checks
○ Index-based accesses may still be bounds-checked at runtime

Ok, it’s safe and portable. But is it robust and correct?

● Robustness: We can’t be sure!
○ OOB arena access means termination in Rust (e.g. “panic”)
○ But not memory corruption, like C or C++

● Correctness: arena doesn’t guarantee set/map logic is correct.

● “Differential fuzzing” can validate reliability and logical equivalence. Idea:
○ Use standard library’s set/map as a “known good” model, fuzz against it
○ Stress test all APIs, in random order and with random parameters, and check “lock step”

Validation: Differential Fuzzing with LLVM’s LibFuzzer

https://github.com/rust-fuzz/cargo-fuzz

https://github.com/rust-fuzz/cargo-fuzz

Takeaway

● Portability, safety, speed - with a little reframing, you can have all 3:
○ Portable: Stack-only mutable structures possible, no heap or garbage collection.
○ Safe: 1st-party static analysis provably eliminates vicious C/C++ bug classes.
○ Fast: Rust’s speed is comparable to C/C++, often within single-digit percentage.

● Safe Rust is a limited kind of “formal verification”:
○ Limited: Prove only one, domain-agnostic property - memory safety.
○ But Practical: Development speed suitable for many commercial businesses.
○ Fuzzing is supplemental, stochastic validation for properties the compiler can’t prove.

Thank you!

● Crate: https://crates.io/crates/scapegoat
● Blog: https://tiemoko.com/blog/
● GitHub/Twitter: @tnballo

https://crates.io/crates/scapegoat
https://tiemoko.com/blog/

Extra Slides

Per-instance Map Size with Const Generics (Rust 1.51+)

What happened in that terminal scroll?

● Basic block level coverage-guidance
○ Inputs generated to maximize code coverage in programs under test

● Structure-aware mutation
○ Both API calls and their arguments were generated precisely for the program

● Differential comparison
○ Looking for high level logic bugs the specification of an “ordered set”, not just crashes

