Can’t Spell “Curriculum” Without “C”

Rust Education Workshop 2022
Tiemoko Ballo, tballo@alummni.cmu.edu
Alex James, ajames@alumni.cmu.edu

Let’s be frank: we don’t yet know if Rust is the future of high-performance software. Rust offers a commercially-
viable solution to the dire and enduring problem of memory safety without garbage collection latency [1]. Coupled
with a growing ecosystem and a long-held “most-loved” status [2], it’s a solution with undeniable appeal. But will
Rust have anywhere near the societal relevance of the C language, even 10 years from now? Is it truly the most
appropriate way to teach systems programming to burgeoning engineers with little prior?

The staples — operating systems, computer networks, and embedded development — can readily be taught in
Rust. Thus it may be tempting to de-prioritize C within a university curriculum. Or remove coverage outright.

Side-lining C would be a grave mistake: a disservice to today’s learners and, by extension, tomorrow’s practi-
tioners. From the perspective of a realist, not an apologist. C has formidable pedagogical and pragmatic value.
Especially if taught alongside a more modern alternative.

Today’s Learners: Type System Contrast

As learners, students should have the opportunity to think deeply about the impact of abstraction design on
a problem domain. On one hand, C’s simplicity, in count of concepts and keywords, makes it an ideal vehicle
for teaching fundamental low-level abstractions. On the other, a relative lack of high-level abstractions (no traits
or classes, generics, sum types, references, iterators, collections, async) forces a ruthlessly tactical approach to
problem solving. Students must carefully consider mechanical minutia before implementing business logic. Pointer
arithmetic/null-state [3], memory allocation, data layout/initialization, undefined behavior, etc. Even the most
rudimentary task is fraught with subtle defect potential.

When a learner inevitably introduces a runtime error, they are asked to reason about the many complexities
of program execution. Even if C’s constructs no longer map directly to hardware [4], a student must develop a
reasonably accurate mental model of “what the machine is doing” to fix a segmentation fault. Programming in C
remains a literal crash course in computer architecture. Of a visceral nature Rust can’t quite imitate.

Now the lasting lesson, the career-long imprint, isn’t about the machinery of stack and heap memory. It’s about
the difficulty of reliable defect elimination in weakly-typed programs. A first-hand taste of C debugging prepares
students to appreciate the intent and comprehend the benefit of Rust’s borrow checker. Learning both languages
elucidates pass-by-reference semantics, with their myriad performance and security implications, via juxtaposition.

That security piece — the connection between an easy-to-introduce bug and a possible-to-exploit vulnerability — is
key. In 2021, 67% of zero-day exploits “detected and disclosed as used in-the-wild” relied on memory corruption [5].
Contemporary education must reflect this reality. Through the lens of C, students can understand spatial (e.g.
buffer overflow) and temporal (e.g. use-after-free) bug classes. In sufficient depth to diagnose root cause — not
develop exploits. And this hard-won knowledge is transferable: professional Rust developers make judicious use of
unsafe [6], where C-like concepts and risks still apply. Rust’s type system is progress, not panacea.

Tomorrow’s Practitioners: CFFI Competence

As practitioners, students will go on to build production systems of ambitious scale and complexity. That often
means contributing to multi-lingual code bases, where each business problem is solved by the best tool for the job.

Several mechanisms enable cross-language interoperability. In the cloud, modern microservices use standardized
response-request formats — like REST and gRPC. But on the client, the C Foreign Function Interface (CFFI) is
king. For better or worse, C-style data representation remains the de facto protocol for connecting languages [7].

Why? Whereas package managers let us compose source code libraries, all programs ultimately compose at the
compiled shared library and process/OS boundaries. Because every mainstream OS is written in C, CFFI powers
abstractions at these intersections — like Python’s extension modules, the Java Native Interface (JNI), and most
application-specific embedded scripting. No matter what level of the technology stack graduates go on to specialize
in, they’ll never truly escape C semantics. In fact, those who master them are well-equipped to integrate otherwise
disparate technologies and deliver impactful solutions. So let’s prepare them accordingly.

Closing

Framing Rust in the context of C makes for an accessible introduction to type systems and practical vocational
training. Simultaneously. That’s why we chose this approach in High Assurance Rust — a free online textbook about
developing secure and robust systems software [§]. Now there are countless pedagogical challenges in seamlessly
bridging a multi-decade (1972 to 2010) language paradigm gap — we need a range of books, courses, and tools as
diverse as the learners they serve. Only one thing is certain: the ideal curriculum is largely undefined.



References

1]

L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in Memory,” in 2013 IEEE Symposium on
Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pp. 48-62, IEEE Computer Society,
2013.

“Stack Overflow Developer Survey 2022: Most loved, dreaded, and wanted.” https://survey.stackoverflow.
co/2022/#technology-most-loved-dreaded-and-wanted, Jun 2022.

T. Hoare, “Null References: The Billion Dollar Mistake.” https://www.infoq.com/presentations/
Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/.

D. Chisnall, “C Is Not a Low-Level Language: Your Computer is Not a Fast PDP-11.,” Queue, vol. 16, p. 18-30,
apr 2018.

M. Stone, “The More You Know, The More You Know You Don’t Know.” https://googleprojectzero.
blogspot.com/2022/04/the-more-you-know-more-you-know-you.html, Apr 2022.

V. Astrauskas, C. Matheja, F. Poli, P. Miiller, and A. J. Summers, “How Do Programmers Use Unsafe Rust?,”
Proc. ACM Program. Lang., vol. 4, nov 2020.

A. Beingessner, “C isn’t a programming language anymore.” https://gankra.github.io/blah/
c-isnt-a-language/, Mar 2022.

T. Ballo, M. Ballo, and A. James, “High Assurance Rust: Developing Secure and Robust Software.” https:
//highassurance.rs, 2022.


https://survey.stackoverflow.co/2022/#technology-most-loved-dreaded-and-wanted
https://survey.stackoverflow.co/2022/#technology-most-loved-dreaded-and-wanted
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://gankra.github.io/blah/c-isnt-a-language/
https://gankra.github.io/blah/c-isnt-a-language/
https://highassurance.rs
https://highassurance.rs

