
Efficient JOP Gadget Search
Quickstart: cargo install xgadget --features cli-bin

Google’s 2022 analysis1 of zero-day exploits “de-
tected and disclosed as used in-the-wild” stated:

“Memory corruption vulnerabilities have been the stan-

dard for attacking software for the last few decades and

it’s still how attackers are having success.”

One factor in such incredible longevity is nascent
adoption of memory-safe systems languages2. Another
is continued emergence of new attack paradigms and
techniques. Hardware W⊕X support (aka NX, DEP)
has prevented code injection since the early 2000s. In
response, Return Oriented Programming (ROP)
introduced code reuse: an attacker with stack control
chains together short, existing sequences of assembly
(aka “gadgets”) — should a leak enable computing gad-
get addresses in the face of ASLR. When contiguous
ROP gadget addresses are written to a corrupted stack,
each gadget’s ending ret instruction pops the next gad-
get’s address into the CPU’s instruction pointer. The
result? Turing-complete control over a victim process.

Jump Oriented Programming (JOP) is a
newer code reuse method which, unlike ROP, doesn’t
rely on stack control. And thus bypasses shadow-stack
implementations, like Intel CET SS3. JOP allows stor-
ing a table of gadget addresses in any RW memory
location4. Instead of piggy-backing on call-return se-
mantics to execute the gadget list, a “dispatch” gadget
(e.g. add rax, 8; jmp [rax]) controls table index-
ing. Chaining happens if each gadget ends with a jmp

back to the dispatcher (instead of a ret).

The Challenge in JOP Gadget Search

Disassembly is typically linear (decode consecutive
instructions) or recursive-descent (follow control-flow
from entry point). Gadget search is atypical: assum-
ing x64, the ROP goal is finding every instance of an
opcode (e.g. 0xc3, 1 of 4 ret variants) and iteratively
moving the disassembly starting point backwards, one
byte at a time, to find a sequence of valid instructions
ending with the tail opcode. Even if they start at mis-
aligned offsets in the context of a normal program (e.g.
partway through an intended instruction).

JOP gadgets present a unique challenge. For x64,
the subset of relevant jmp and call instructions (e.g.
jmp rax or call [rbx], absolute indirect target) all
have encodings starting with byte literal 0xff. Most
gadget search tools use regex to find specific encodings
before attempting disassembly. For example, certain
4-byte encodings of jmp [reg + offset] match via
\xff[\x60-\x63\x65-\x67][\x00-\xff]. Regex has
two major drawbacks:

1https://googleprojectzero.blogspot.com/2022/04/

the-more-you-know-more-you-know-you.html
2https://highassurance.rs
3Weakness: CET can include IBT to mitigate JOP. But IBT

only validates target addrs, not func prototypes. Can still jump

to imports, etc. JOP attacks are constrained, not eliminated.
4Aside: ROP chains may control stack location via “stack piv-

oting”, but gadget address placement remains stack-restricted.

1. Performance — Must run the regex state ma-
chine to find matching offsets, then run a disassem-
bler on matches (duplication of per-regex work).

2. Completeness — Need a complete list of regexs
to match all 50+ possible x64 indirect jmp/call

encodings (complex, error-prone).

Leveraging Instruction Semantics

We avoid both drawbacks with a general solution:
encoding higher-level operand semantics. Attempt to
disassemble a single instruction at every offset (or only
instances of 0xff), then work backwards if disassembly
succeeds (e.g. valid instruction) and the instruction’s
operand behavior makes it a viable gadget tail.

The below code snippet finds JOP gadget tails, for
all possible jmp and call encodings, using official Rust
bindings for zydis5.

#![no_std] // PROOF: below code is bare-metal portable
#![forbid(unsafe_code)] // PROOF: non-ext-lib code is mem-safe

use zydis::enums::{Mnemonic, OperandAction, OperandType};
use zydis::{DecodedInstruction, Register};

// Categorization --

/// Check if viable JOP or COP tail instruction
pub fn is_jop_tail(instr: &DecodedInstruction) -> bool {

matches!(instr.mnemonic, Mnemonic::JMP | Mnemonic::CALL)
&& (has_one_reg_op(instr) || has_one_reg_deref_op(instr))

}

// Constructs for attacker control -----------------------

/// Check for sole register operand (e.g. ‘‘jmp rax’’)
fn has_one_reg_op(instr: &DecodedInstruction) -> bool {

instr
.operands
.iter()
.filter(|&o| {

(o.action == OperandAction::READ)
&& (o.ty == OperandType::REGISTER)

}).count() == 1
}

/// Check for sole register-controlled memory
/// deference (e.g. ‘‘jmp dword ptr [rax]’’)
fn has_one_reg_deref_op(instr: &DecodedInstruction) -> bool {

instr
.operands
.iter()
.filter(|&o| {

(o.action == OperandAction::READ)
&& (o.ty == OperandType::MEMORY)
&& (o.mem.base != Register::NONE)

}).count() == 1
}

Closing

Society is still playing one of computer security’s
oldest cat-and-mouse games. If future exploit mitiga-
tions thwart ROP, JOP provides comparable expressiv-
ity — despite more complex gadget search and exploit
development6. At least until safer type systems, CFI
runtimes, and/or CHERI hardware become universal.

We’ve implemented the semantic search technique
described here in xgadget7 - a fast, parallel, open-
source, cross-{patch,compiler}-variant ROP/JOP gad-
get finder. Happy hunting.

5https://zydis.re
6https://www.exploit-db.com/exploits/45045
7https://github.com/entropic-security/xgadget

Tiemoko Ballo

EFFICIENT JOP GADGET SEARCH
Reverse Engineering

https://highassurance.rs
https://tiemoko.com

SAA-ALL 0.0.744

https://highassurance.rs/
https://tiemoko.com/

