
SoK: Enabling Security Analyses of Embedded Systems via
Rehosting

Andrew Fasano
fasano@mit.edu

MIT Lincoln Laboratory
Northeastern University

Boston, Massachusetts, USA

Tiemoko Ballo
tiemoko.ballo@ll.mit.edu
MIT Lincoln Laboratory

Lexington, Massachusetts, USA

Marius Muench
m.muench@vu.nl

Vrije Universiteit Amsterdam
Amsterdam, Netherlands

Tim Leek
trleek@ll.mit.edu

MIT Lincoln Laboratory
Lexington, Massachusetts, USA

Alexander Bulekov
alxndr@bu.edu
Boston University

Boston, Massachusetts, USA

Brendan Dolan-Gavitt
brendandg@nyu.edu
New York University

New York, New York, USA

Manuel Egele
megele@bu.edu
Boston University

Boston, Massachusetts, USA

Aurélien Francillon
aurelien.francillon@eurecom.fr

EURECOM
Biot, France

Long Lu
l.lu@northeastern.edu
Northeastern University

Boston, Massachusetts, USA

Nick Gregory
nmg355@nyu.edu
New York University

New York, New York, USA

Davide Balzarotti
davide.balzarotti@eurecom.fr

EURECOM
Biot, France

William Robertson
wkr@wkr.io

Northeastern University
Boston, Massachusetts, USA

ABSTRACT
Closely monitoring the behavior of a software system during its exe-
cution enables developers and analysts to observe, and ultimately un-
derstand, how it works. This kind of dynamic analysis can be instru-
mental to reverse engineering, vulnerability discovery, exploit de-
velopment, and debugging. While these analyses are typically well-
supported for homogeneous desktop platforms (e.g., x86 desktop
PCs), they can rarely be applied in the heterogeneous world of em-
bedded systems. One approach to enable dynamic analyses of em-
bedded systems is to move software stacks from physical systems
into virtual environments that sufficiently model hardware behavior.
This process which we call “rehosting” poses a significant research
challenge with major implications for security analyses. Although
rehosting has traditionally been an unscientific and ad-hoc endeavor
undertaken by domain experts with varying time and resources at
their disposal, researchers are beginning to address rehosting chal-
lenges systematically and in earnest. In this paper, we establish that
emulation is insufficient to conduct large-scale dynamic analysis of
real-world hardware systems and present rehosting as a firmware-
centric alternative. Furthermore, we taxonomize preliminary rehost-
ing efforts, identify the fundamental components of the rehosting
process, and propose directions for future research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8287-8/21/06.
https://doi.org/10.1145/3433210.3453093

CCS CONCEPTS
• Software and its engineering → Software reverse engineering;
Software post-development issues;Dynamic analysis; •Hardware
→ Post-manufacture validation and debug; Simulation and emula-
tion; • Computer systems organization → Firmware; Embedded
software; Real-time systems.

KEYWORDS
Dynamic program analysis; firmware security; emulation; embed-
ded systems; internet of things; virtualization; rehosting

ACM Reference Format:
AndrewFasano, TiemokoBallo,MariusMuench, TimLeek, Alexander Bulekov,
Brendan Dolan-Gavitt, Manuel Egele, Aurélien Francillon, Long Lu, Nick
Gregory, Davide Balzarotti, and William Robertson. 2021. SoK: Enabling
Security Analyses of Embedded Systems via Rehosting . In Proceedings of
the 2021 ACM Asia Conference on Computer and Communications Secu-
rity (ASIA CCS ’21), June 7–11, 2021, Hong Kong, Hong Kong. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3433210.3453093

1 INTRODUCTION
Whereas enterprise edge systems are typically maintained by IT pro-
fessionals, the rise of low-cost, consumer edge devices (“Internet of
Things”) has led to an increasingly large number of Internet-accessible
machines which malicious actors can exploit. In 2016, the Mirai
malware exploited insecure default credentials on many of these ma-
chines to create a botnet of approximately 600,000 devices [1]. But
poor security posture is a problem emblematic of many embedded
systems, not just consumer edge devices. Despite the frequent use
of embedded systems for safety-critical, industrial applications, over
90% of embedded real-time operating systems fail to implement

This work is licensed under a Creative Commons Attribution International 4.0 License.

ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8287-8/21/06.
https://doi.org/10.1145/3433210.3453093

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

687

https://doi.org/10.1145/3433210.3453093
https://doi.org/10.1145/3433210.3453093
https://creativecommons.org/licenses/by/4.0/

virtual memory, cryptographically secure pseudo-random number
generators, or basic exploit mitigations such as non-executable data
memory, ASLR, and stack canaries [82]. Across a broad spectrum
of applications, embedded systems are typically less secure than
general-purpose computers due to a combination of technical and
socio-economic factors. Embedded systems often contain numerous
special-purpose peripherals leading to a larger attack surface than
their general-purpose counterparts. BroadPwn [3], an unauthenti-
cated Remote Code Execution exploit, attacks embedded systems
(mobile phones) through a device peripheral (WiFi chipsets). A com-
promised peripheral may be leveraged to compromise the full sys-
tem if the peripheral is Direct Memory Access capable [75] or if
it can be used to exploit a vulnerability in a device driver [73, 74].
But these kinds of cross-component vulnerabilities cannot be discov-
ered or replicated through analysis of a single application, since the
exploit chain may leverage behavior of—and data flows between—
multiple hardware and software components of a system.

Given a general lack of hardening and complex peripheral interac-
tions, the ability to perform security analyses of embedded systems
is critical to improving the security of these increasingly prevalent
and network-connected devices. However, the vast majority of em-
bedded systems security analyses performed today use only static
analysis [11, 19, 22, 67, 85]. While this is a promising start, secu-
rity assessments would be strengthened by the ability to conduct
dynamic analysis of embedded systems [27].

Whole-system dynamic analysis can be achieved by decoupling a
system’s firmware from its underlying hardware tomove—or rehost—
the software into a virtual environment designed to run that firmware.
However, this decoupling is no easy feat: firmware is written for a
specific System-on-Chip (SoC), compiled for a specific CPU, and
reliant on a specific set of peripherals. Rehosting a system into a vir-
tual environment unlocks capabilities unavailable with physical sys-
tems: inspectability, mutability, replicability, scalability, and dispos-
ability. Such an environment can be leveraged to inspect execution
of the rehosted system at arbitrary granularity and without the con-
straints of hardware-based solutions [41]. Similarly, the virtual sys-
tem’s state is fullymutable—CPU state or memory may be modified
at any point in execution. Sources of non-determinism can be con-
trolled in a virtual environment to ensure replicability of analysis re-
sults or behavior. As software, rehosted systems are scalable—they
can be inexpensively cloned to conduct distributed analyses or to
share with collaborators. Finally, virtual systems can be created on
demand, and because they are disposable, analysts need not worry
about damaging a rehosted system. Altogether, these properties en-
able analysts to conduct security analyses—such as smart fuzzing
and symbolic execution—that would otherwise be infeasible on the
original physical system or through static analysis.

Though rehosting has numerous benefits and clear use cases, it
has not previously been approached in a systematic fashion. This
paper seeks to:

• introduce the need for and challenges of rehosting (§2, 3, 5);
• quantitatively analyze obstacles preventing embedded firmware
from running in whole-system emulators (§ 4);

• taxonomize preliminary work in the rehosting space (§ 5.2);
• identify key components of the rehosting process (§ 6); and
• establish a roadmap to guide future rehosting research (§ 7).

System On Chip

Embedded System

Instruction Set

CPU Core µArchitecture

ROM SRAM

UART1

Flash

Temp.
Sensor

UART2

I²C

SPI

Microwire

...

GPIO_A

GPIO_B

UART3

WiFi
module

EEPROM

RTC

Accelerometer

Motor
Ctrl

Serial
Port

GPIO_C

B
u
s
e
s

Firmware

External Hardware Unused peripherals

Used peripherals

Kernel and Driver Code

Application Code

Function Code

On-Chip
Peripherals

Motor

Antenna

Figure 1: An illustrative embedded system.

2 REHOSTING FOR WHOLE-SYSTEM
SECURITY ANALYSIS

In contrast to a hardware emulation system which comprehensively
reproduces the features of specific hardware in a virtual environ-
ment, a rehosted embedded system is designed around a specific
firmware image and must only reproduce the necessary hardware
features that enable the firmware (or relevant components thereof)
to run sufficiently in a virtual environment. We define these terms
as follows:

Definition 1. Virtual Environment (VE): A software environment
in which code can be executed transparently.

Definition 2. Hardware Emulation System (HES): A VE designed
to accurately recreate the features of one or more selected pieces of
hardware. Commonly called an emulator.

Definition 3. Rehosted Embedded System (RES): A combination
of a firmware image and VE designed to sufficiently recreate the
firmware’s hardware dependencies such that analyses produce re-
sults representative of the firmware running on its original hardware.

HESs target hardware of varying scale, from an ISA or CPU [65]
to an entire SoC [84], or even the physical systems connected to
an embedded system [9]. When available, the VE provided by an
HES should be the preferred way to conduct dynamic analyses of
an embedded system’s firmware. However, the hardware platforms
supported by HESs are extremely limited in both scale and diver-
sity. We believe this scarcity is due to the fundamental challenge
of building an HES: supporting all the features of a given hardware
platform requires a comprehensive understanding of the system and
every feature that could be used.

In contrast, building a RES avoids this challenge by only model-
ing the hardware features necessary to enable a selected firmware

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

688

to run sufficiently for some analysis task. We define this process as
follows:

Definition 4. Rehosting: The process of building an RES for a given
embedded system to enable a specified analysis task. May include
modifications to the firmware.

Consider the hypothetical embedded system presented in Fig. 1.
By limiting the scope of the VE to only the necessary components,
rehosting greatly reduces the barrier to entry for dynamic security
analyses. Once firmware can be run in a VE, it is inspectable, mu-
table, replicable, scalable, and disposable, properties critical for dy-
namic security analyses that are generally absent from physical sys-
tems.

Inspectability, scalability, and disposability are critical for large-
scale, coverage-guided fuzz testing where mutated inputs are passed
into many copies of a system. By inspecting program execution, a
fuzzer can measure code coverage to guide mutations of inputs, ex-
pediting discovery of new execution paths and potential bugs [45].
Inspectability also underpins dynamic taint analysis, a technique for
tracking how program states and values are derived from specially
marked inputs. Taint analysis can identify execution paths in which
tainted inputs influence sensitive parts of a system. Taint informa-
tion can aid both vulnerability discovery and general reverse engi-
neering [71].

Mutability, replicability, inspectability, and disposability enable
forced execution, a technique which explores a program’s state by
repeatedly executing uncovered branches via mutation of CPU state
at branching instructions. Forced execution can be used to generate
both control flow graphs and call graphs that are more accurate than
those produced by static analysis. This technique can also be used
to aid in dynamic type reconstruction [63].

More broadly, accurately rehosting a system into a VE where it
is fully inspectable enables security analyses to consider any possi-
ble input to a system and the resulting behavior. If the inputs to an
embedded system can be configured in such a way to produce unde-
sired behavior, an attacker may leverage this vulnerability and craft
the necessary inputs to exploit the system.

Although the process of rehosting a system fundamentally re-
quires decoupling its software stack from its physical hardware, this
decoupling can also occur at higher layers of abstraction. Logicwithin
user space applications (function layer), or even which applications
are run (application layer), may be modified to enable rehosting. If
an OS is present, it may be modified to enable rehosting (OS layer).
Finally, the peripherals and CPUs of a physical system may be mod-
ified to support rehosting (hardware layer). Vulnerabilities in em-
bedded systems may be caused by one or more mistakes in a single
abstraction layer or the interactions between mistakes across multi-
ple layers. Therefore modifications must be made with caution.

2.1 Multi-Layer Vulnerabilities
To illustrate how vulnerabilities arise from interactions across sys-
tem layers, consider the auth_user function in Listing 1 which com-
pares user input against a password stored in non-volatile storage
(NVRAM). While use of the gets function introduces a clear vul-
nerability contained in the function layer, other bugs in the snippet
can turn into vulnerabilities depending on the hardware environ-
ment that executes this code. Note that neither the return value of

1 int secure_memcmp(char *s1, char *s2, int len){

2 int res = 0;

3

4 // Determine if any characters mismatch

5 for(int i = 0; i < len; i++)

6 res |= s1[i] ^ s2[i]

7 return res;

8 }

9

10 int auth_user(void) {

11 nvram_handle_t h;

12 char *pwd;

13 char buf [32];

14

15 // Read stored password from nvram

16 h = nvram_open("/dev/nvram", O_RDONLY);

17 pwd = nvram_get(h, "user_pass");

18

19 // Read data from (untrusted) user

20 gets(buf);

21 return secure_memcmp(buf , pwd , strlen(pwd));

22 }

Listing 1: Insecure authentication function (hypothetical).

nvram_open nor nvram_get is checked. These functions may return
NULL if the peripheral acting as NVRAM fails.While this would lead
to a crash on general-purpose computers, embedded systems com-
monly fail to deploy memory protections and allow mapping of the
NULL page. In such a scenario, an attacker who can predict the con-
tents of the NULL page would be able to bypass the authentication
check.

Even seemingly bug-free portions of code can turn into vulnera-
bilities depending on the hardware environment in which they are
executed. The secure_memcmp function in Listing 1 aims to prevent
timing side-channel attacks for password-retrieval by introducing a
constant time string comparison. However, this mitigation is predi-
cated on the assumption that the system executes OR and XOR oper-
ations without data-dependent differences in speed. If this assump-
tion is incorrect, an exploitable timing side-channel may exist.

If a security analysis is conducted using a VE which fails to suffi-
ciently capture behavior of these layers, the analysis results may be
inaccurate. As such, it is essential to understand any modifications
to abstraction layers made by an RES.

3 CHALLENGES TO BUILDING VIRTUAL
ENVIRONMENTS

Hardware and software of embedded systems are tightly coupled
and tailored to perform a set of specific operations. Examples of
such systems are provided in Appendix A. Embedded systems are
incredibly diverse as each is designed to satisfy a novel combina-
tion of use case, power, performance, and cost constraints. These
constraints impact all phases of the system design including instruc-
tion set architecture selection, peripheral selection, hardware design,
and software functionality. To satisfy these constraints, modular-
ity and standardization—typically emphasized on general purpose
computers—are routinely sacrificed for custom logic that assumes
specific hardware configurations. These assumptions introduce chal-
lenges for security analyses that seek to evaluate firmware in a VE.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

689

As a result of this diversity, multiple taxonomies for classifying
embedded systems exist. We follow the security-oriented classifica-
tion proposed by Muench et al. [60] which categorizes embedded
systems based on their deployed OS type. Type-1 systems use gen-
eral purpose OSs retrofitted for embedded systems; Type-2 systems
use custom embedded OSs; and Type-3 systems do not use OS ab-
stractions at all. Non-embedded systems are described as Type-0.

3.1 Obtaining Firmware
Conducting dynamic analyses of any system fundamentally requires
access to the code the system executes (compiled or as source). But
unlike with traditional software systems, possession of an embed-
ded system does not immediately enable analysis of its logic. Ob-
taining its firmware may require significant resources, especially as
firmware may be encrypted-at-rest or guarded by hardware readout
protections. In these cases, invasive hardware attacks [61, 64, 79]
can typically be used to extract firmware from an embedded system
but require specialized equipment, such as scanning electron micro-
scopes and focused ion beams [78]. On the other hand, non-invasive
hardware attacks (e.g., connecting to debug interfaces) and software-
based techniques (e.g., downloading/intercepting firmware updates
or software exploitation) for extracting firmware vary from one em-
bedded system to the next. When available, these approaches pro-
vide an alternative path to firmware extraction without the need for
specialized equipment [80].

3.2 Understanding Instruction Set Architectures
Though some embedded systems use programmable logic chips such
as field programmable gate arrays (FPGAs) or complex programmable
logic devices, most rely on a primary, general-purpose CPU. An in-
struction set architecture (ISA) describes how a CPU decodes and
executes machine instructions.

The x86 ISA family is used for the vastmajority of general-purpose
computers and, as such, many systems have been developed to ana-
lyze and emulate it [48, 70]. On the other hand, the embedded mar-
ket routinely uses ARM, MIPS, PPC, AVR, and other ISA families.
Within each family there are often incompatibilities between various
offerings, and some ISAs, such as MIPS and Xtensa, allow vendor
customization which creates even more diversity.

The diversity of ISAs used in embedded systems poses challenges
to security research as analyzing machine code for any given system
requires a detailed understanding of the system’s ISA. A VE must
capture this understanding through a Virtual Execution Engine:

Definition 5. Virtual Execution Engine (VXE): A mechanism for
interpreting instructions for a given ISA in a VE.

A VXE may provide this interpretation using a model of an ISA
specification or by running an interpreter on an intermediate repre-
sentation of version of compiled code (e.g., McSema [25]). A HES
should provide a VXE that fully captures an ISA’s semantics, but an
RES need only support the subset of the ISA that is actually used by
a given firmware.

3.3 Modeling Peripherals
Peripheral devices work alongside the CPU to provide additional
functionality and interface with the external world. Traditional desk-
top systems use peripheral enumeration to dynamically discover de-
vices as they are connected and disconnected over external (e.g.,
USB) or internal (e.g., PCIe) buses [30, 32]. Moreover, BIOS and
UEFI both provide standardized OS/HW interface abstractions for
desktop systems: the OS can query for peripherals not present on
enumerable buses [31] and assume a standard I/O address space [5].

In contrast, embedded systems often lack an equivalent OS/HW
interface abstraction and instead rely on a fixed set of permanently
connected peripherals. Peripheral configurations are often tightly
coupled with the OS and applications due to the manufacturer’s
knowledge of the hardware configuration. As such, VEs generally
must model these peripherals to ensure systems behave as expected.
Beyond simply ensuring functionality, modeling peripherals in VEs
is critical for security analyses as peripherals are typically the source
of attacker-controlled data.

3.4 Evaluating Fidelity
The fidelity of a rehosted system describes how well the behavior of
an RES mirrors it’s physical counterpart. The literature lacks a for-
mal definition of rehosting fidelity and no large-scale fidelity evalu-
ations have been conducted to date. However, individual rehosting
techniques have been evaluated by measuring if systems accept net-
work connections [10], collecting and comparing peripheral interac-
tions [49], and comparing the similarity of instruction traces [8].

We identify that, in the general case, the problem of measuring
rehosting fidelity is an example of an unsolvable variation on the
equivalence problem [87]. Since current rehosting techniques com-
monly produce RESs with clearly distinct behavior from their phys-
ical counterparts, fidelity can typically be described by measuring
the observable differences.

4 QUANTIFYING THE DIFFICULTY OF
EMBEDDED HARDWARE EMULATION

To motivate the need for firmware-centric rehosting, we analyze two
corpora of machine-parsable hardware descriptions, jointly repre-
senting over two and a half thousand embedded SoCs, and evaluate
the tractability of using open source HESs to replicate the described
hardware.

With these corpora, we measure the availability of VXEs for the
described CPUs and HES support for peripherals found in the de-
scribed systems. Subsequently, we estimate the complexity of the
described peripherals and evaluate the feasibility of generating pe-
ripheral models as needed through a Monte Carlo simulation. Our
results show that developing HESs does not scale and that a large
gap exists between the hardware platforms supported by such sys-
tems and the platforms used by firmware.

4.1 Datasets
Our datasets consist of 1,956 individual Device Tree Blob (DTB)
files fromLinuxKernel version 5.11.41 and 618manufacturer-provided

1https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.11.4.tar.xz (February 2021)

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

690

https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.11.4.tar.xz

SystemViewDescription (SVD) files2 conforming to the CortexMi-
crocontroller Software Interface Standard. DTB files are standard-
ized descriptions of hardware (CPU and on/off-chip peripherals) for
Type-1 embedded systems, agnostic of OS or architecture, and are
parsed by an OS kernel during boot to drive hardware initialization.
Systems in our Linux dataset range from development boards (e.g.,
ARM Versatile Platform Baseboard) to commercial products (e.g.,
Nintendo Gamecube). Linux DTB support dates back to 2005 [51]
with usage in PPC kernel ≥ 2.6 and ARM kernel ≥ 3.7.

The SVD files describe ARM Cortex hardware for Type-2 and
Type-3 embedded systems, such as medical devices and mesh net-
work transmitters respectively. Though OS-agnostic, they describe
exclusively ARM architecture systems. SVD files are used during
development and debugging to understand the memory-mapped in-
terface between a CPU and an SoC’s peripherals [2].

Prior firmware measurement studies [10, 19] used web crawlers
to collect publicly available firmware images. These approaches are
difficult to reproduce as copyright restrictions prevent corpora dis-
tributed and link rot prevents crawlers from running successfully
after release. In contrast, kernel source and SVD datasets are largely
available andmirrored, making our approach fully reproducible. Ap-
pendix B describes our methodology in detail. Our analysis code is
publicly available and containerized3.

4.2 Approach
We use two corpora to analyze 2,574 real-world hardware configura-
tions. We only consider architectures (DTB corpus) or silicon ven-
dors (SVD corpus) with 10 or more distinct samples. Each sample
maps to exactly one real-world embedded system. We quantify:

(1) VXE availability by contrasting corpora CPUmodels against
those supported in a mature, open-source HES;

(2) VE diversity by measuring the number of unique peripherals
in corpora SoCs;

(3) VE complexity by measuring complexity of corpora SoCs as
a function of peripheral driver code size; and

(4) Tractability of HES implementation by simulating VE cre-
ation to measure transferable work.

All of these analyses use data from our DTB corpus while diver-
sity (2) and tractability (4) are supplemented with information from
our SVD corpus.

4.3 Availability: Virtual Execution Engines
A critical component of a VE is its VXE. To evaluate the availability
of VXEs for real-world embedded systems, we contrast CPUmodels
present in our DTB corpora with those supported in the QEMU em-
ulator [4], the predominant, open-source, HES. Matches are based
on exact CPU core, e.g., cortex-a9, not ISA version, e.g., ARMv7-A.
While using an alternate model of the same ISA version may some-
times be possible, in practice such a substitution may introduce dis-
crepancies (e.g., illegal extension instruction). Appendix B.1 pro-
vides additional details of our CPU model matching methodology.

The results of this comparison are presented in Table 1. Note how
little CPU support has increased over time, both in absolute counts
and as a percentage of corpus CPUs. In the worst case for modern
2https://github.com/posborne/cmsis-svd
3https://github.com/igloo-re/rehosting_sok

Table 1: Observed CPU models supported by QEMU versions.

v2.11.1 (Feb. '18) v5.2.0 (Dec. '20)

Arch
Models
avail.

Dataset
supported

Models
avail.

Dataset
supported

ARM 31 20% 36 20%
ARM64 33 9% 39 12%
MIPS 15 50% 16 50%
PPC 407 53% 407 53%

Table 2: Peripheral diversity.

(a) Type-1 Linux Systems (DTB corpus)

Arch |SoC| Unique P µ ± σ P/SoC x̃ P/SoC
ARM 1,310 6,858 58 ± 26 55
ARM64 430 3,653 58 ± 24 59
MIPS 20 270 21 ± 11 16
PPC 196 1,422 31 ± 19 27

(b) Type-2 and Type-3 ARM Cortex Systems (SVD corpus)

Vendor |SoC| Unique P µ ± σ P/SoC x̃ P/SoC
Atmel 147 416 34 ± 10 30
Freescale 133 561 49 ± 13 47
Fujitsu 100 237 44 ± 9 41
NXP 24 374 28 ± 18 21
STMicro 72 852 59 ± 22 58
SiliconLabs 10 62 40 ± 2 40
Spansion 88 193 44 ± 9 42
TI 52 95 27 ± 4 26

QEMU, only 12% of the observed ARM64 CPU models are sup-
ported. Appendix B.4 provides data for the similarly miniscule in-
crease of peripheral totals across these versions.

4.4 Diversity: Unique Peripherals
Beyond the VXE, a VE for an SoC must also handle peripheral in-
teractions. Across our corpora, we see 14,715 distinct peripherals, a
quantity that far exceeds the number of supported peripherals in any
modern HES. Methodology for peripheral identification is detailed
in Appendix B.2.

Table 2 shows the SoC count and unique peripheral count for each
architecture (DTB corpus) and each ARM Cortex vendor (SVD cor-
pus). We also calculate the mean with standard deviation of periph-
eral count per SoC and the median peripheral count per SoC (repre-
sented as x̃). From these data, we see that a Type-1 PPC HES would
need to support 1,422 unique peripherals to support all 196 Type-1
PPC SoCs or 31 peripherals, on average, for any single SoC. The
diversity of peripherals present in Type-2 and Type-3 ARM Cortex
systems varies by silicon manufacturer, but the mean and median
peripheral per SoC is comparable to that of Type-1 ARM systems.

In contrast to the diversity of peripherals in real-world embed-
ded systems, modern open-source HESs support relatively small
sets of peripherals. For example, QEMU version 5.2.0 has models
for 337 ARM64 peripherals and 216 PPC peripherals while OVP-
sim [53], an HES leveraging standardized peripheral models, has
only 23 ARM peripherals and 3 MIPS peripherals.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

691

https://github.com/posborne/cmsis-svd
https://github.com/igloo-re/rehosting_sok

Table 3: SLOC for open-source device drivers.

Arch |DD| µ ± σ SLOC/DD |SoC| µ ± σ SLOC/SoC
ARM 3,783 617.29 ± 650.50 1,310 43,036.59 ± 21,598.35
ARM64 2,414 665.87 ± 716.87 430 44,088.23 ± 20,404.85
MIPS 175 383.46 ± 465.71 20 9,406.93 ± 5,318.66
PPC 324 495.08 ± 428.79 196 22,879.97 ± 12,861.21

4.5 Complexity: Driver SLOC as a Proxy
We can approximate peripheral and SoC complexity for embedded
Linux systems by measuring Source Lines Of Code (SLOC) for
open-source drivers corresponding to peripherals referenced in our
DTB corpus. Driver SLOC is a proxy for complexity: a device driver
implements only half of the OS/hardware “conversation.” Each dri-
ver interfaces with a hardware peripheral whose internal states and
logic may not always be proportionally complex to that of the de-
vice driver. Thus, we use SLOC data to provide a rough estimate of
the software engineering effort required to build a model of a given
peripheral. SLOC computation methodology and an analysis of the
correlation between QEMU peripheral vs. device driver SLOC is
described in Appendix B.3.

Table 3 shows the mean and standard deviation of SLOC for de-
vice drivers and SoCs. Notably, the standard deviation for SLOC per
driver can be higher than the mean, indicating considerable variabil-
ity in driver complexity. Looking at ARM64 as an example, we can
expect the average SoC to require over 44,000 device driver SLOC
implemented as kernel code to manage its hardware. Although not
every device driver will mirror the complexity of its associated hard-
ware peripheral and our sample of open-source drivers may not be
representative of all closed-source counterparts, these SLOC mea-
surements hint at the scale of software engineering effort required
to build HESs for disparate SoCs.

4.6 Tractability: Simulation of Emulating
Hardware Systems

One potential strategy to build an HES that supports a large number
of SoCs is to incrementally add support for new hardware compo-
nents the first time each component is present in an SoC of interest.
If such a strategy were to be pursued from scratch, building the HES
for the first SoC would require modeling the VXE and all its periph-
erals. Extending the HES to support subsequent SoCs would require
less effort if the VXE and peripherals were used by a prior SoC and
thus already supported by the HES. This approach would be viable
for generating VEs if, after some initial effort building models for
common VXEs and peripherals, the problem were to become signif-
icantly easier. By running two Monte Carlo simulations of building
an HES to support SoCs from our datasets, we discover that this
is not the case and conclude that building or extending HESs is an
impractical approach to building VEs for SoCs of interest.

In our simulations, we imagine an analyst selecting SoCs at ran-
dom and building an HES by creating new peripheral models and
VXEs whenever an SoC has a never-before-seen peripheral or CPU.
To simplify result summary, we treat CPUs and peripherals equiva-
lently throughout the simulation. This does not impact result valid-
ity since both must be modeled in an HES. We also do not subtract

SoCs = [...] // Systems from DTB or SVD corpus

for sim_round = 1 to 1000 do
Pm = {∅}
// Randomly sample 10% of SoCs and simulate updating HES

to support each

for i = 1 to |SoCs |/10 do
system = дet_rand_f rom(SoCs)
Pu = {∅}
foreach p ∈ system do

if p < Pm then
Pu = (Pu ∪ {p })

end
end
Pm = (Pm ∪ Pu)
Record(|Pu |) // Per-system effort

end
Record(|Pm |) // Cumulative effort

end
Algorithm 1: Simulation of peripheral modeling.

QEMU-supported CPUs or peripherals from the modeled total. This
ensures our results reflect the difficulty of HES construction in gen-
eral, not just the current state of QEMU.We contrast against QEMU
only to provide context. For each of the randomly selected SoCs, we
record how many new peripherals must be modeled to estimate the
marginal work required to update the HES to support the new SoC
given all the prior (simulated) work. Algorithm 1 depicts this simu-
lation in detail.

In each round of the simulation, we sample 10% of the relevant
corpus (at random and without replacement) and simulate building
an HES to support the selected systems. The peripherals supported
by the HES are tracked in Pm , which begins as an empty set. As
we iterate through the selected systems in a random order, we pop-
ulate Pu with a list of the peripherals used by each system that are
unsupported by the HES. After examining each system, we simulate
updating the HES to support these peripherals by adding Pu into Pm .
Thus, |Pm | is a running total of aggregate effort, and |Pu | is the per-
system required effort. This Monte Carlo simulation runs for 1,000
rounds.

To measure how much of our theoretical implementation work
translates between SoCs, we consider the mean count of unimple-
mented peripherals, ¯|Pu |, in each of the sampled systems. This value
is shown in Fig. 2, across all rounds for each of our simulations.
Note that for the final, 195th, Linux system, we still have to imple-
ment 11.4±14.4 peripherals, on average. These simulations suggest
that even if an analyst chose to manually implement thousands of
peripherals into an HES, missing peripherals would still be a major
roadblock to supporting subsequent SoCs. Note that the simulation’s
random selection naturally accounts for “most common” peripher-
als. The simulation results show that peripherals are so diverse that
prioritization is not helpful.

On average, developing anHES capable of supporting a randomly
selected 10% of our SoCs would require supporting 3, 947 ± 159
peripherals for Linux systems or 1, 730 ± 125 peripherals for ARM
Cortex systems. By contrast, QEMU 5.2 and OVPsim implement
a total of 1, 083 and 216 peripherals respectively for the surveyed
architectures.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

692

0 50 100 150

0

20

40

60

80

Number of SoCs (DTB) with Peripherals Modeled

M
ea
n
N
um

.P
er
ip
he
ra
ls
to
M
od
el

¯ |P
u
|

(a) Unimplemented peripherals in 195 randomly sampled embedded
Linux systems at each round of simulation.

0 10 20 30 40 50 60

0

20

40

60

80

Number of SoCs (SVD) with Peripherals Modeled

M
ea
n
N
um

.P
er
ip
he
ra
ls
to
M
od
el

¯ |P
u
|

(b) Unimplemented peripherals in 64 randomly sampled Cortex systems
at each round of simulation.

Figure 2: Average number of peripherals that must be modeled when building 1,000 (simulated) HESs to support 10% of the embedded
systems from each corpus. For each HES, a system is selected from the relevant corpus, its count of unmodeled peripherals (|Pu |) is
recorded, and it’s unmodeled peripherals are imagined to be modeled for subsequent system selections.

This means that emulating the SoCs in our random sample of the
DTB corpus requires approximately four times the number of pe-
ripherals QEMU currently supports. This does not imply QEMU is
a fourth of the way to being viable for embedded emulation; the total
number of manually implemented peripherals, |Pm |, only grows if
we select a larger percentage of the corpora (e.g., 25% or 100%) as
we would be arranging to emulate more systems and, consequently,
encounter even more unimplemented peripherals. Our 10% sample
size was chosen to demonstrate that a leading modern HES can-
not support even a small subset of either corpus. After two years of
QEMU development, the situation has not improved. Moreover, new
SoCs with new peripherals are constantly being manufactured, so
peripheral diversity in-the-wild is likely to increase over time. This
makes manual implementation an unending, expensive endeavor.

To estimate engineering effort for these peripheral implementa-
tions, we track driver SLOC for every modeled peripheral in the
DTB corpus. Each time an unmodeled peripheral is encountered,
we count its SLOC if source is available. For closed-source drivers,
we use the architecture-specific average SLOC per driver. The mean
SLOC total corresponding to the all peripherals implemented by the
end of the simulation is 2,448,354. Hence, we conclude that manual
peripheral implementation does not scale and that an HES with sup-
port for the majority of embedded systems will likely never exist.

5 THE CASE FOR REHOSTING
From the analyses presented in § 4, it is evident that embedded
systems are remarkably diverse and impossible to fully support in
HESs without automation. In spite of these challenges, there is still
a clear need for dynamic analysis of the firmware running on embed-
ded systems which can be accomplished by rehosting. Prior work

has taken this firmware-centric approach with a variety of strate-
gies [10, 20, 23, 43, 47, 49, 77, 86]. However, without a standard
definition of the underlying process, advances in this space have typ-
ically been ancillary to enabling other research tasks, such as fuzzing
embedded web applications [20]. We argue that by studying rehost-
ing as a research problem in its own right, the broader research com-
munity can find more general solutions which will make narrower
problems much easier to solve.

At present, the process of rehosting ismore alchemy than chemistry—
opaque, unrepeatable, and prone to failure. We hope to see a fu-
ture in which rehosting is a systematic and scientific endeavor made
possible with standard methodology and effective technologies. To
that end, this section identifies the goals of rehosting, contextualizes
prior work, identifies how different classes of embedded systems
present different rehosting challenges, and examines how reducing
the scope of a VE can ease the rehosting process.

5.1 Rehosting Goals
Decoupling firmware from its physical dependencies facilitates a
wide spectrum of processes including reverse engineering, training,
system evaluation and certification, vulnerability research, and ex-
ploit development. With each of these use cases, a different popu-
lation of users wish to leverage rehosting towards a different goal.
For instance, hardware and software vendors may wish to use re-
hosting during testing and development of a product. These vendors
may use rehosting techniques that require expert knowledge of their
target hardware platform and manually build a VE. On the other
hand, third parties who lack detailed information on a target platform
(e.g., security analysts, reverse engineers, or system integrators) may
be interested in rehosting for vulnerability discovery, system under-
standing, or system verification. These users need an approach to

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

693

Table 4: Taxonomy of existing work according to how each layer is handled.
🌐: Passed through 💻: Emulated ○: Not modified ◪: Replaced x: Symbolic model

Layer Target Availabilitya
System Hardware OS Application Function System Type ISA(s) Binary? Source Dataset

Pure
Emulation

BaseSafe [54] ◪ ◪ ◪ 💻 2 ARM 3 3 3
Clements’21 [16] 💻◪ ◪ ○ ○ 2 ARM 3
Costin’16 [20] 💻 ◪ ○ ○ 1 ARM, MIPS 3
DICE [57] 💻◪ ○ ○ ○ 2 3 ARM, MIPS 3 3 3
Firm-AFL [88] 💻 ◪ ○ ○ 1 ARM, MIPS 3 3 3
Firmadyne [10] 💻 ◪ ○ ◪ ○ 1 ARM, MIPS 3 3
FirmAE [46] 💻 ◪ ○ ◪ ○ ◪ 1 ARM, MIPS 3 3
HALucinator [15] 💻◪ ◪ ○ ○ ◪ 2 3 ARM 3 3 3
Li’21 [50] ◪ ◪ ○ ○ 2 N/A ~ ~
LuaQEMU [17] 💻 — ○ ○ ◪ 3 ARM 3 3
P2IM [29] 💻◪ ○ ○ ○ 2 3 ARM 3 3 3
PartEmu [37] 💻◪ ○ ○ ◪ ○ 2 ARM 3

Hardware-in-
the-Loop

Avatar2 [59] 🌐💻◪ — 🌐○ 🌐 ○ 3 ARM 3 3 3
Charm [77] 🌐💻 ◪ ○ ○ 1 ARM 3 3
FEMU [49] 🌐💻 ○ ○ ○ 0 1 2 3 x86
Frankenstein [69] 💻◪ ◪ ○ ○ ◪ 2 ARM 3 3
FirmCorn [35] 💻 🌐 ◪ ○ ○ ◪ 1 ARM, MIPS, x86 3 3 ~
Kammerstetter [42] 🌐💻 🌐 ◪ ○ ○ 0 1 MIPS 3
Pretender [36] 🌐💻◪ — ○ ○ 3 ARM 3 3 3
Prospect [43] 🌐💻 🌐 ◪ ○ ○ 0 1 MIPS 3
Surrogates [47] 🌐💻 ○ ○ ○ 0 1 2 3 ARM 3

Symbolic
Abstractions

FIE [23] x — ○ ○ 3 MSP430 3 3
FirmUSB [38] x — ○ ○ 3 8051/52 3 3
Firmalice [72] x ○ x ○ ○ x 1 2 ARM, PPC 3
Laelaps [8] x ○ ○ ○ 2 3 ARM 3 3 ~

Hybrid
Approaches

Avatar [86] 🌐💻 x 🌐○ 🌐○ 🌐 ○ x 2 3 ARM 3 3 3
Inception [18] 🌐💻 x ○ ○ ○ 2 3 ARM 3 ~
Mousse [52] 🌐 🌐○ ○ ○ x 1 ARM 3 ~

aPartial availability is indicated via ~.

rehosting that does not require expert knowledge or manual imple-
mentation effort. Despite their distinct end goals, both sets of users
would benefit from research advancements that improve and poten-
tially automate the rehosting process.

5.2 State of the Art
Due to the diversity of hardware platforms and dearth of documen-
tation, it is rarely possible to create an HES that models every layer
of even a single embedded system. As a result, RESs are commonly
used as a less precise alternative to enable analyses that produce
meaningful results about the original system. Rehosting systemsmust
make decisions about how to model each layer of target embedded
systems informed by the desired analysis outcomes. These systems
make different trade-offs regarding which layers should be emulated
precisely, modeled with some approximation, or passed through to
a physical embedded system.

In Table 4, we systematize existing work, contrasting how rehost-
ing systems handle various abstraction layers of target systems. At a
given layer, a particular system may choose to emulate a component
(💻), replace it (◪), model it symbolically (x), pass it through to real
hardware (🌐), or leave it unmodified (○).

We also identify four broad approaches to rehosting: pure emula-
tion, hardware-in-the-loop emulation, symbolic modeling of periph-
erals, and hybrid systems that combine hardware-in-the-loop with
symbolic peripheral models. We refer readers interested in the his-
torical relationships between these works to Appendix C. Lastly, a
concurrent survey by Wright et al. [83] provides additional infor-
mation on rehosting fidelity and deployed analysis techniques for
common rehosting tools and approaches.

5.2.1 Pure Emulation. Themost straightforward, though labor-intensive
approach, to building a VE is emulating all the necessary compo-
nents. As previously shown, building complete emulators for every
component of an embedded system (i.e., an HES) is difficult and
cannot scale. However, it is still challenging to identify and model
a minimum set of necessary peripherals and features when building
an RES. To simplify the process, an analyst may choose to ignore in-
teractions with some peripherals, manually implement models, sub-
stitute peripherals with similar peripherals that have been modeled,
or fall back on other rehosting strategies.

Ideally, pure emulation approaches would refrain frommodifying
the OS, application, or function layers and only replace the hardware
and physical layers with emulated models to support detection of
software vulnerabilities (e.g., memory corruption) but not hardware
vulnerabilities. In practice, emulation-based rehosting techniques
often modify the firmware to simplify the rehosting process and,
in the process, excise some of the firmware from the VE. Type 1
firmware are commonly rehosted by using a generic kernel com-
bined with the firmware’s file-system in order to run user space bi-
naries [10, 20, 88].

With Type-2 and Type-3 firmware, one rehosting technique is to
allow an analyst to manually define models of peripheral behavior at
higher abstraction layers [15–17, 50, 54]. For example, HALucina-
tor [15] hooks calls into vendor-specificHardwareAbstraction Layer
(HAL) functions and replaces them with Python approximations of
the requested hardware functionality. An alternative approach is build-
ing peripheral models at lower abstraction layers [29, 37, 57]. For
example, P2IM [29] observes MMIO access patterns in order to ap-
ply a pre-defined behavioral model.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

694

5.2.2 Hardware-in-the-Loop Schemes. This approach, often referred
to as partial emulation, addresses the problem of missing periph-
eral models by forwarding device interactions to the real hardware
or extracting live snapshots from the running device. The software
layers from a system are moved into a VE and mutated such that OS-
hardware interactions are passed through to unmodified hardware
running in the physical world.

This method yields high-fidelity models of the hardware-layer.
In addition to physical hardware, this approach typically requires
debugging access to the original execution environment, which is
seldom present by default and often difficult to obtain. Additionally,
the complexity added by the forwarding interface often leads to very
high execution overheads (e.g., latency), limiting support for certain
peripheral classes. Hardware-in-the-loop solutions generally do not
scale since these solutions require a physical system pairedwith each
VE. One notable exception is Pretender [36], which requires hard-
ware only during a training phase in which peripheral models are
generated from observations of real hardware behavior.

While most hardware-in-the-loop systems modify QEMU to use
it as a VXE [36, 42, 43, 47, 49, 59, 69], relying purely on emula-
tion is not a requirement, as demonstrated by Charm [77]. This sys-
tem runs Android device drivers for ARM devices in a virtualized
x86 environment and forwards MMIO to a physical device via USB
3.0. This design provides low-latency forwarding and high execu-
tion speeds, enabling Charm to fuzz device drivers.

5.2.3 Symbolic Abstractions. Another method to model hardware
in VEs is to emulate software layers and consider all the values read
from hardware to be symbolic. These approaches require a symbolic
VXE such as KLEE [7] or S2E [13]. FIE [23], for example, uses
KLEE as a VXE to symbolically execute the firmware while allow-
ing for every valid interrupt to be raised at every instruction. This
technique typically over-approximates hardware capabilities by as-
suming every peripheral is capable of returning the full range of
possible values, which may lead to false positive analysis results
and cause state-space explosion, even for small firmware programs.

5.2.4 Hybrid Approaches. Some rehosting approaches combine
hardware-in-the-loop schemes with symbolic execution to allow for
more flexible analysis scenarios such as bug finding or reverse engi-
neering of hardware components.

Inception [18] is one such full-system hybrid solution. It consists
of a custom JTAG debugger for near real-time hardware forwarding,
a symbolic VXE based on KLEE, and a translator for merging lifted
and compiled LLVM bitcode to cope with inline assembly. However,
its implementation is tied to the ARM Cortex-M3 microcontroller
and requires the firmware’s source code, constraining its usability.

5.3 Effects of Different System Types
Naturally, approaches to crafting VEs differ depending on the tar-
get system. While Type-1 systems are generally the most complex
class of embedded system, their operating systems commonly pro-
vide clear hardware abstractions. As a result, applications on these
systems are self-contained, rarely interacting directly with hardware.
In many cases, this means the kernel and drivers can be replaced in
order to ease integration with a VE. This approach is often used by
the systems with replaced (◪) OS layers as shown in Table 4.

On the other hand, there are fewer hardware abstractions present
in Type-2 systems and none in Type-3 systems.While the underlying
hardware in these systems is generally simpler, the amount of hard-
ware modeling required to build a working VE is often higher. No-
tably, to our knowledge, no existing approaches to rehosting Type-2
systems make use of abstractions provided by the OS.

6 THE REHOSTING PROCESS
We study the rehosting approaches outlined in § 5.2 to identify com-
mon patterns and articulate a common rehosting process. We model
rehosting as the process of building a specification for an RES and
then iteratively evaluating and refining the specification until its fi-
delity is satisfactory. Although the rehosting process does not funda-
mentally require iterative refinement, the information available even
in a low-fidelity VE is commonly used as it provides invaluable in-
sights into the requirements of an RES.

Rehosting an embedded system S begins with an initial specifica-
tion of an RES. A specification R is a 4-tuple that defines a rehosted
system and consists of a VXE (cpu), firmware to execute (fw), mod-
els for its n peripherals ({p j | j ∈ 1, 2, 3...n}), and miscellaneous
configuration data (d).

6.1 Iterative Refinement
After the initial specification, R0, is created, it can immediately be
subject to detailed observations and analysis, even before its behav-
ior sufficientlymirrors S . Clearly, such analyses cannot producemean-
ingful results with respect to S while these behaviors diverge, but
they can instead be used to guide the rehosting process by reveal-
ing which component of R0 led to divergent behavior. For example,
if the VXE (cpu) fails to execute an instruction in fw, errors in the
construction of cpu may become apparent. Alternatively, if an insuf-
ficient peripheral model returns a value that causes a divergence, a
dynamic taint analysis can identify the deficiency in the model. As
such, iterative evaluation and refinement will greatly aid the gener-
ation of an accurate RES. Fig. 3 captures this process in detail. To
represent the RES through iterations of this process, we define the
ith iteration to be:

Ri = (cpui , fwi , {p
j
i },di)

To build the initial specification,R0, an analystmust obtain the firmware
for the system, fw0. Static analysis of fw0 can identify the ISA for the
original CPU, cpu. To execute fw0, there must be a VXE available
for its ISA. If none is available, one must be developed, a complex
task even if the ISA is well-documented.

In addition to a VXE for the ISA of cpu, models for each periph-
eral with which fw0 interacts, p̄ j , must be developed as necessary.
The aforementioned approaches to peripheral modeling fit into this
model as follows. Pure emulation creates virtual models of peripher-
als comparable to the original peripherals: ∀j : p j ≈ p̄ j . Hardware-
in-the-loop configures cpu to pass interactions with peripherals p j
to p̄ j over a debugging channel between cpu and cpu: ∀j : p j = p̄ j ,
sans latency. Symbolic abstractions treat peripheral outputs as un-
constrained symbolic values (∀j : p j ⊃ p̄ j) and leverage symbolic
execution to build a VE. Hybrid approaches combine techniques
from the prior two approaches to support more flexible analyses.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

695

Obtain
Firmware

Enumerate
Peripherals

Determine
ISA

Obtain
Physical Device

Generate Initial
Specification

R0 :
(
cpu0, fw0, {p

j
0},d0

)

Documentation &
Prior Knowledge

Access Output
Channel

Run Rehosted
System: Ri

Evaluate
Fidelity
of Ri

Update
Specification
Ri → Ri+1 Ground-Truth

Traces
Expected
Behavior

Improvements
Necessary

Ri

Figure 3: The process of rehosting an embedded system. Itera-
tion improves fidelity by updating the RES specification.

While the initial R0 may not be perfect, cpu0 must be fairly accu-
rate for the VE to run fw0 in a meaningful way. By contrast dynamic
analysis can more easily identify incorrectly modeled peripherals or
invalid configuration data. While it may be theoretically possible to
build an accurate specification in a single attempt, in practice an it-
erative dynamic analysis process is what makes RES construction
feasible.

Ri is executed as follows, where i=0 in the first iteration: fwi is
run using cpui with peripherals p

j
i and configuration data di . Initial

attempts to use Ri will likely fail to sufficiently mirror S , but since
rehosted systems are introspectable, the execution can be analyzed
and various traces extracted to aid diagnostics. These traces may
be collected by capturing the execution state at every instruction,
system call, or at any other time of interest. Traces from Ri have
more diagnostic value if equivalent traces can be collected from the
real device, S , via an output channel such as hardware debug support
(e.g., JTAG) or extractable software logs (e.g., Linux ftrace).

Evaluating the fidelity of Ri with comparisons of ground-truth
traces or expected behavior from S to observations of Ri is essential
for determining when the rehosting process has finished. Access to
the physical device can make assessing fidelity easier. Without the
physical device, assessments can only be approximated using prior
knowledge of the system’s expected behavior. For example, the gate-
way functionality (e.g., DHCP, NAT support) of a router’s firmware
could be tested, but high-level functional testing is a very coarse
measure of fidelity.

If the fidelity of Ri is unsatisfactory, it may be improved by mod-
ifying its components to produce Ri+1. This might mean correcting
instruction decoding errors in cpui+1 or excising irrelevant parts
of the firmware in fwi+1. Alternatively, parameters or data in di+1

could be changed or a peripheral model, p ji+1, may be updated. Af-
ter making these changes, Ri+1 should be run so that iterative refine-
ment can continue. After some number of refinements, the fidelity

of Ri should become satisfactory if all reasonable system modifica-
tions are considered. Once the rehosting process is complete, the
final R can be saved to use for dynamic analysis.

7 REHOSTING ROADMAP
In this section, we identify and discuss rehosting roadblocks that
require addressing. We organize these into a roadmap for future re-
search and development with the hope of guiding the community
toward a future in which rehosting is a well-understood, systematic,
and scientific endeavor. We identify the following significant obsta-
cles to the rehosting process that could be improved by future work:

(1) Building VXEs for new CPUs/ISAs;
(2) Widespread adoption of modeling standards;
(3) Handling peripheral behavior;
(4) Quantifying fidelity of a rehosted system; and
(5) Facilitating rehosting for complex systems

7.1 Creating Virtual Execution Engines
Building a VE may require an analyst to implement a new VXE.
When documentation or prior knowledge about an ISA is available,
building a VXE is a straightforward, but significant, undertaking.
Without such information, an in-depth analysis of system binaries
may occasionally enable development of an emulator [28, 44], but
this is an incredibly challenging task.

The difficulty of building VXEs, a critical piece of rehosting,
means that the vast majority of existing work focuses on widely-
used and well-documented ISAs. This is reflected in the supported
ISAs shown in Table 4 where the majority of tools focus solely on
rehosting ARM targets, MIPS targets, or both in their evaluation.
PowerPC, MSP430, and 8081 are targeted by only one tool each,
and other commonly deployed architectures—such as Xtensa, AVR,
RISC-V, and SPARC—are not represented at all.

Despite the current focus on ARM and MIPS on Linux, the em-
bedded systems in the wild are more diverse. While it is difficult
to pinpoint the distribution of ISAs and OSs, prior studies provide
an estimate by crawling the Internet for firmware images. For in-
stance, in the dataset Chen et al. acquired for Firmadyne [10], 82%
of firmware images ran on MIPS, 10% were ARM (neglecting endi-
anness and bitwidth), and approximately 41% of all acquired images
were based on Linux. Another large-scale study within the same or-
der of magnitude [19] reports the acquisition of a dataset in which
63% of the firmware is for ARM devices, 7% for MIPS, and 86% for
Linux. These numbers differ largely due to changes in source selec-
tion and processing of the datasets, but both show that a significant
amount of firmware is not written for ARM and MIPS on Linux.

Given the significant number of embedded devices not running
Linux on ARM or MIPS, an important research task is to find ways
of making it easier to create fast and accurate VXEs. There has been
some encouraging recent work on automated synthesis of seman-
tic specifications for specific ISAs such as x86 [34, 39]. TaintIn-
duce [14] shows that higher level semantics (i.e., taint propagation
rules) can be dynamically inferred for an ISA. However, these ap-
proaches focus on simple instructions, such as arithmetic and ba-
sic logical operations. To create fully-fledged VXEs for real-world
CPUs, complex instructions that manipulate hidden CPU states (e.g.,

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

696

instructions that change privilege levels) or perform complex high-
level tasks (e.g., the AES-NI instructions on x86) may need to be
handled.

Although various languages for describing and specifying CPU
behaviour can create emulators and simulators (e.g., Sleigh [33],
Sled [66], and Verilog [40]), the process of creating these specifi-
cations is manual and error-prone. We believe research into extend-
ing automated synthesis to complex instructions and ISAs found in
embedded systems could ease the difficulty of rehosting systems
that use proprietary, legacy, or merely unpopular CPUs and archi-
tectures.

7.2 Widespread Adoption of Modeling Standards
Of the standard formats commonly used today to describe hardware
layouts and encode peripheral metadata (e.g., Device Trees [24],
ACPI tables [31], SVD files [2]), none encode hardware behavior. If
such a format was widely adopted, VEs could ingest abstract config-
urations that encode peripheral and CPU behaviors to use as drop-in
replacements or shims for full implementations of each.

This lack of widespread adoption is not due to a lack of standard-
ization. The OpenVirtual Platforms (OVP) project provides a collec-
tion of APIs for modeling peripheral and VEs as well as a repository
of generated models [53]. Components of embedded systems can be
modeled using OVP’s APIs in a standardized fashion and consumed
by multiple emulators. OVP has partnered with numerous semicon-
ductor design companies including ARM and MIPS to validate be-
havior of its models. Another notable standard is SystemC [62], a
hardware modeling platform for behavioral and system levels. Al-
though hardware modeled in one of these standards cannot easily
be converted into the other, emulators such as QEMU and OVPsim
can be integrated with either of these standards [21, 58]. Future re-
hosting research should leverage these standards to build off existing
hardware models and to produce results that could be consumed by
subsequent work.

7.3 Handling Peripherals
A critical, yet challenging, component of building a high-fidelity VE
is generating an accurate model of all the peripherals with which the
firmware will interact. Between the early drafts of this paper in 2018
and our current submission, researchers have started down the path
to automated peripheral modeling we describe here (in particular,
Pretender [36], and Laelaps [8]). We find it encouraging that the re-
search community has begun to realize the importance of automated
emulation of embedded devices, but stress that open problems re-
main formidable. We identify at least five possible approaches to
handle embedded peripherals.

First, if prior knowledge of peripheral behavior or documentation
is available, a model could be manually constructed or a pre-built
model could be leveraged. Although § 4 shows that this approach
cannot scale to the diversity of peripherals found in the wild, it may
be possible to at leastmake themanual effort invested reusable through
the use of standardized models described in § 7.2.

A second approach is to attempt to automatically create a model
of a peripheral through analysis of its firmware or the behavior of
the physical system. Pretender [36] shows that MMIO traces from
a physical system can be used to infer some peripheral models, but

additional work is necessary to model complex peripherals. Alter-
natively peripheral models could be generated by analyzing driver
code using symbolic execution (e.g., Laelaps [8]), fuzzing, or static
analysis.

Third, if sufficient instrumentation capabilities are available on a
target system, peripherals could be probed with inputs and models
constructed to describe observed outputs. Subramanyan et al. [76]
demonstrated that some cryptographic co-processors could automat-
ically be modeled by creating peripheral templates and then using
program synthesis from I/O samples to automatically synthesize a
working peripheral model. This approach, if extended to other com-
mon embedded peripherals, such asUARTs and timers, could greatly
ease the burden of peripheral modeling.

A fourth approach is to replace a peripheral with another that is
already modeled, remove it entirely or replace it with a symbolic
peripheral model. While prior approaches [12, 59, 68] have used
symbolic peripheral models, they quickly encounter problems due
to state explosion. If analysis indicates that replacing or removing
a peripheral will have insignificant effects on a system’s behavior,
such a change can be an effective option.

A final approach is to intercept requests at higher layers of abstrac-
tion that ultimately lead to peripheral interactions and build mod-
els there. This approach, known as high-level emulation, precludes
analysis of potentially vulnerable driver code but enables reuse of
peripheral models when common peripheral interfaces can be iden-
tified across multiple embedded systems [15].

Even with these approaches, peripherals that provide unavailable,
high-entropy data will often be impossible to sufficiently model. For
example, a model of a storage controller built without knowledge
of any the underlying file system data could lead an RES to an un-
bounded state if any code from that file systemwas executed. Regard-
less of implementation specifics, new capabilities to handle device
peripherals are necessary, given the asymmetry between peripheral
diversity in the wild and manually developed peripheral models.

7.4 Formalizing Fidelity
The fidelity evaluations and comparisons commonly used in the re-
hosting literature to date are informal and as such, prevent meaning-
ful comparisons between rehosting techniques. As identifying when
two systems are equivalent is an unsolvable problem in the general
case, we do not believe future rehosting techniques will ever guar-
antee flawless fidelity for non-trivial systems. However, we see two
distinct scenarios for evaluating rehosting fidelity and suggest more
principled approaches to both.

Some rehosting techniques, particularly those that model periph-
erals with symbolic abstractions, are designed to over-approximate
behavior of physical systems. These techniques aim to reduce false
negatives by analyzing every possible state; however, this increases
the rate of false positives as infeasible states will also be analyzed.
As such, the fidelity evaluation for these rehosting techniques must
differ from those that aim to precisely replicate a system’s behavior.
Quantifying the fidelity of an over-approximated RES should com-
pare concrete states from the physical system to reachable states in
the RES. Such states could be memory snapshots or traces of in-
structions executed. A high-fidelity, over-approximated RES should
be able to reproduce every state from a large collection of states.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

697

Working with an RES that aims to precisely reproduce a physi-
cal system’s behavior could be evaluated in terms of input-output
equivalence. Providing an identical set of input states to the two
versions of the system and comparing the outputs will reveal in-
formation about the fidelity of the RES. The confidence in this fi-
delity evaluation would depend on the scale and diversity of input
states tested as well as the precision of the output comparison. The
output comparison could be made more precise by modifying the
systems to produce intermediate outputs through techniques such
as binary rewriting (e.g., Ramblr [81]), or enabling non-standard
logging. Perhaps an ideal technique for collecting intermediate out-
puts would build on program slicing techniques. Although current
whole-system slicing techniques (i.e., Virtuoso [26]) fail to handle
inter-process communication, peripheral behavior, or process cre-
ation, solutions to these shortcomings would enable precise capture
of every intermediate output. If slices on output buffers of interest
could be extracted from and compared between an RES and its phys-
ical counterpart, differences may reveal inequivalencies.

7.5 Rehosting of Complex Embedded Systems
The current state-of-the-art of rehosting revolves around firmware
executed on a single CPU and is closely tied to the peripherals asso-
ciated to that CPU. Yet, embedded systems usually consist of more
than one processing unit and cyber-physical systems can easily com-
prise multiple different CPUs, specialized Digital Signal Processors
(DSPs), custom Application-Specific Integrated Circuits (ASICs)
and configurable FPGAs [6, 55, 56].

Existing rehosting systems either ignore these components ormodel
them as peripherals. However, similar to multi-layer vulnerabilities
discussed in § 2.1, some vulnerabilities may only be observable
when the interactions between the components are captured thor-
oughly in a rehosted system. Hence, we believe future rehosting ap-
proaches will need to investigate computing units beyond traditional
general purpose processors, as well as the interaction between mul-
tiple rehosted components.

8 CONCLUSION
Rehosting is an important capability that enables the application of
powerful dynamic analysis techniques such as fuzzing and symbolic
execution to embedded systems. While prior work has attempted to
develop ad-hoc solutions to rehosting in the pursuit of other research
goals, we argue that rehosting is a research problem in its own right
and, as such, should be approached systematically.

In this paper, we disambiguate the field of rehosting from emula-
tion and show that building complete hardware emulation systems
is both unnecessary to enable dynamic analysis of firmware and im-
possible to scale. We propose a taxonomy of rehosting strategies,
highlighting the differences between preliminary approaches in a
systematic fashion. We identify the essential steps in the rehosting
process and a high-level, iterative process for rehosting embedded
systems. Finally, we describe unsolved rehosting challenges and pro-
pose a roadmap for future research in this space.

By improving the rehosting process, the security community will
finally be able to apply decades of dynamic analysis research and
mature tooling to the world of embedded systems. We hope that this

systematization, together with our suggested future research direc-
tions, will spawn new lines of rehosting research, well-equipped to
provide the foundation of successful security analysis platforms for
current and future embedded systems.

ACKNOWLEDGMENTS
The authors wish to thank the following individuals for their con-
tributions and support: Lindsey Wang, John Wilkinson, Douglas
E. Stetson, William Hedberg, and Greta Lepore. This work was in
part funded by ONR Awards N00014-15-1-2180 and N00014-19-
1-2364; the National Science Foundation under Grants No. CNS-
1916398 andCNS-1942793; NWO628.001.030 “Tropics” andNWO
NWA-ORC InterSect; and a research contract with Siemens AG.
DISTRIBUTIONSTATEMENTA.Approved for public release. Dis-
tribution is unlimited. This material is based upon work supported
by the Under Secretary of Defense for Research and Engineering
under Air Force Contract No. FA8702-15-D-0001. Any opinions,
findings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the
views of the Under Secretary of Defense for Research and Engineer-
ing, Office of Naval Research, or the National Science Foundation.

REFERENCES
[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran,

Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever,
Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou.
Understanding the mirai botnet. In USENIX Security, 2017.

[2] ARM. System view description. https://www.keil.com/pack/doc/CMSIS/SVD/
html/index.html.

[3] N. Artenstein. Broadpwn: Remotely compromising android and ios via a bug in
the broadcom wi-fi chipset, 2017.

[4] F. Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, 2005.

[5] N. Brown. Device trees i: Are we having fun yet? https://lwn.net/Articles/572692/.
[6] P. Burgio, C. Alvarez, E. Ayguadé, A. Filgueras, D. Jimenez-Gonzalez, X. Mar-

torell, N. Navarro, and R. Giorgi. Simulating next-generation cyber-physical com-
puting platforms. Ada User Journal, 37, 2016.

[7] C. Cadar, D. Dunbar, D. R. Engler, et al. Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs. In OSDI, 2008.

[8] C. Cao, L. Guan, J. Ming, and P. Liu. Device-agnostic firmware execution is
possible: A concolic execution approach for peripheral emulation. In ACSAC.
ACM, 2020.

[9] A. Caraceni, F. De Cristofaro, F. Ferrara, S. Scala, and O. Philipp. Benefits of
using a real-time engine model during engine ecu development. Technical report,
SAE Technical Paper, 2003.

[10] D. D. Chen, M. Woo, D. Brumley, and M. Egele. Towards automated dynamic
analysis for Linux-based embedded firmware. In NDSS, 2016.

[11] K. Cheng, Q. Li, L. Wang, Q. Chen, Y. Zheng, L. Sun, and Z. Liang. Dtaint:
detecting the taint-style vulnerability in embedded device firmware. In IEEE/IFIP
DSN, 2018.

[12] V. Chipounov and G. Candea. Reverse engineering of binary device drivers with
revnic. In ACM EUROSYS.

[13] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform for in-vivo multi-
path analysis of software systems. In ACM SIGARCH Computer Architecture
News, 2011.

[14] Z. L. Chua, Y. Wang, T. Baluta, P. Saxena, Z. Liang, and P. Su. One engine to
serve’em all: Inferring taint rules without architectural semantics. In NDSS, 2019.

[15] A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz, et al. HALucina-
tor: Firmware re-hosting through abstraction layer emulation. InUSENIX Security,
2020.

[16] A. A. Clements, L. Carpenter, W. A. Moeglein, and C. Wright. Is your firmware
real or re-hosted? a case study in re-hosting vxworks control system firmware. In
BAR, 2021.

[17] Comsecuris. Luaqemu. https://github.com/comsecuris/luaqemu.
[18] N. Corteggiani, G. Camurati, and A. Francillon. Inception: system-wide security

testing of real-world embedded systems software. In USENIX Security, 2018.
[19] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A large-scale analysis of

the security of embedded firmwares. In USENIX Security, 2014.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

698

https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html
https://lwn.net/Articles/572692/
https://github.com/comsecuris/luaqemu

[20] A. Costin, A. Zarras, and A. Francillon. Automated dynamic firmware analysis at
scale: a case study on embedded web interfaces. In ACM ASIA CCS, 2016.

[21] F. Cucchetto, A. Lonardi, and G. Pravadelli. A common architecture for co-
simulation of systemc models in qemu and ovp virtual platforms. In IEEE VLSI-
SoC, 2014.

[22] Y. David, N. Partush, and E. Yahav. Firmup: Precise static detection of common
vulnerabilities in firmware. ACM SIGPLAN Notices, 2018.

[23] D. Davidson, B. Moench, T. Ristenpart, and S. Jha. Fie on firmware: Finding vul-
nerabilities in embedded systems using symbolic execution. In USENIX Security,
2013.

[24] Devicetree.org. Device tree specification v0.2. https://www.devicetree.org/
specifications/, 2017.

[25] A. Dinaburg and A. Ruef. Mcsema: Static translation of x86 instructions to llvm.
In ReCon 2014 Conference, Montreal, Canada, 2014.

[26] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso: Narrowing
the semantic gap in virtual machine introspection. In IEEE SP, 2011.

[27] M. D. Ernst. Invited talk static and dynamic analysis: synergy and duality. In
ACM SIGPLAN-SIGSOFT PASTE, 2004.

[28] fail0verflow. Unprogramming: Intro. https://fail0verflow.com/blog/2012/
unprogramming-intro/, 2012.

[29] B. Feng, A. Mera, and L. Lu. P2im: Scalable and hardware-independent firmware
testing via automatic peripheral interface modeling. In USENIX Security, 2020.

[30] S. Fleming. Accessing pci express configuration registers using intel chipsets.
Intel White Paper, (321090), 2008.

[31] U. E. F. I. Forum. Advanced configuration and powerinterface specification v6.2.
https://uefi.org/sites/default/files/resources/ACPI_6_2.pdf, 2017.

[32] FTDI. Simplified description of usb device enumeration. https:
//www.ftdichip.com/Support/Documents/TechnicalNotes/TN_113_
SimplifiedDescriptionofUSBDeviceEnumeration.pdf, 2009.

[33] Ghidra. SLEIGH - A Language for Rapid Processor Specification.
[34] P. Godefroid and A. Taly. Automated synthesis of symbolic instruction encodings

from I/O samples. In ACM SIGPLAN PLDI, 2012.
[35] Z. Gui, H. Shu, F. Kang, and X. Xiong. Firmcorn: Vulnerability-oriented fuzzing

of iot firmware via optimized virtual execution. IEEE Access, 2020.
[36] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry, Y. Fratantonio,

D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel, et al. Toward the analysis of
embedded firmware through automated re-hosting. In RAID, 2019.

[37] L. Harrison, H. Vijayakumar, R. Padhye, K. Sen, andM.Grace. Partemu: Enabling
dynamic analysis of real-world trustzone software using emulation. In USENIX
Security, 2020.

[38] G. Hernandez, F. Fowze, D. J. Tian, T. Yavuz, and K. R. Butler. Firmusb: Vetting
usb device firmware using domain informed symbolic execution. InACM SIGSAC,
2017.

[39] S. Heule, E. Schkufza, R. Sharma, and A. Aiken. Stratified synthesis: Automati-
cally learning the x86-64 instruction set. In ACM SIGNPLAN PLDI, 2016.

[40] IEEE Computer Society. Std 1364: IEEE Standard for Verilog Hardware Descrip-
tion Language. 1995.

[41] M. J. Jung and T. Ballo. Stm-based introspection. Technical report, Sandia Na-
tional Lab.(SNL-NM), Albuquerque, NM (United States), 2017.

[42] M. Kammerstetter, D. Burian, and W. Kastner. Embedded security testing with
peripheral device caching and runtime program state approximation. In SECUR-
WARE, 2016.

[43] M. Kammerstetter, C. Platzer, and W. Kastner. Prospect: peripheral proxying
supported embedded code testing. In ACM ASIA CCS, 2014.

[44] P.-H. Kamp. The crypto-cs-seti challenge: An un-programming chal-
lenge. http://web.archive.org/web/20160304030848/http://queue.acm.org/
unprogramming.cfm, 2012.

[45] U. Kargén and N. Shahmehri. Speeding up bug finding using focused fuzzing. In
ACM ARES, 2018.

[46] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim. Firmae: Towards large-
scale emulation of iot firmware for dynamic analysis. In ACSAC. ACM, 2020.

[47] K. Koscher, T. Kohno, and D. Molnar. SURROGATES: Enabling near-real-time
dynamic analyses of embedded systems. In Usenix WOOT, 2015.

[48] K. P. Lawton. Bochs: A portable pc emulator for unix/x. Linux Journal, 1996.
[49] H. Li, D. Tong, K. Huang, and X. Cheng. Femu: A firmware-based emulation

framework for soc verification. In IEEE/ACM/IFIP CODES+ISSS, 2010.
[50] W. Li, L. Guan, J. Lin, J. Shi, and F. Li. From library portability to para-

rehosting:natively executing microcontroller softwareon commodity hardware. In
NDSS, 2021.

[51] G. Likely. Linux and the device tree: The linux usage model for device tree data.
[52] Y. Liu, H.-W. Hung, and A. A. Sani. Mousse: a system for selective symbolic

execution of programs with untamed environments. In ACM EuroSys, 2020.
[53] I. S. Ltd. Openvirtualplatforms. http://www.ovpworld.org/, 2019.
[54] D. Maier, L. Seidel, and S. Park. Basesafe: Baseband sanitized fuzzing through

emulation. In ACM WiSec, 2020.

[55] A. Malinowski and H. Yu. Comparison of embedded system design for industrial
applications. IEEE transactions on industrial informatics, 7, 2011.

[56] P. Marwedel. Embedded and cyber-physical systems in a nutshell. DAC.COM
Knowledge Center Article, 2010.

[57] A.Mera, B. Feng, L. Lu, E. Kirda, andW. Robertson. DICE: Automatic emulation
of dma input channels for dynamic firmware analysis. To appear at IEEE SP,
2021.

[58] M.Monton, A. Portero, M.Moreno, B. Martinez, and J. Carrabina. Mixed sw/sys-
temc soc emulation framework. In IEEE ISIE, 2007.

[59] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti. Avatar²: A Multi-target
Orchestration Platform. In BAR, 2018.

[60] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti. What you
corrupt is not what you crash: Challenges in fuzzing embedded devices. In NDSS,
2018.

[61] J. Obermaier and S. Tatschner. Shedding too much light on a microcontroller’s
firmware protection. In USENIX WOOT, 2017.

[62] P. R. Panda. Systemc: a modeling platform supporting multiple design abstrac-
tions. In ACM ISSS, 2001.

[63] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su. X-force: force-executing
binary programs for security applications. In USENIX Security, 2014.

[64] S. E. Quadir, J. Chen, D. Forte, N. Asadizanjani, S. Shahbazmohamadi, L. Wang,
et al. A survey on chip to system reverse engineering. ACM JETC, 2016.

[65] N. A. Quynh and D. H. Vu. Unicorn: Next generation cpu emulator framework.
BlackHat USA, 2015.

[66] N. Ramsey and M. F. Fernandez. Specifying representations of machine instruc-
tions. Transactions on Programming Languages and Systems, 1997.

[67] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshitaishvili,
C. Kruegel, and G. Vigna. Karonte: Detecting insecure multi-binary interactions
in embedded firmware. In IEEE SP, 2020.

[68] M. J. Renzelmann, A. Kadav, and M. M. Swift. Symdrive: testing drivers without
devices. In USENIX OSDI, 2012.

[69] J. Ruge, J. Classen, F. Gringoli, and M. Hollick. Frankenstein: Advanced wireless
fuzzing to exploit new bluetooth escalation targets. In USENIX Security, 2020.

[70] F. Saudel and J. Salwan. Triton: A dynamic symbolic execution framework. In
SSTIC, 2015.

[71] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have
been afraid to ask). In IEEE SP, 2010.

[72] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.
In NDSS, 2015.

[73] O. Shwartz, A. Cohen, A. Shabtai, and Y. Oren. Shattered trust: When replace-
ment smartphone components attack. In USENIX WOOT, 2017.

[74] D. Song, F. Hetzelt, D. Das, C. Spensky, Y. Na, S. Volckaert, G. Vigna, C. Kruegel,
J.-P. Seifert, andM. Franz. Periscope: An effective probing and fuzzing framework
for the hardware-os boundary. In 2019 NDSS, 2019.

[75] P. Stewin and I. Bystrov. Understanding dma malware. In DIMVA, 2013.
[76] P. Subramanyan, Y. Vizel, S. Ray, and S. Malik. Template-based synthesis of

instruction-level abstractions for soc verification. In FMCAD, 2015.
[77] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, et al. Charm: Facilitating dy-

namic analysis of device drivers of mobile systems. In USENIX Security, 2018.
[78] O. Thomas. Integrated circuit reverse engineering and code dumping, 2019.
[79] R. Torrance and D. James. The state-of-the-art in ic reverse engineering. InCHES.

Springer, 2009.
[80] S. Vasile, D. Oswald, and T. Chothia. Breaking all the things-a systematic survey

of firmware extraction techniques for iot devices. In Springer CARDIS, 2018.
[81] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen, et al.

Ramblr: Making reassembly great again. In NDSS, 2017.
[82] J. Wetzels. The rtos exploit mitigation blues. https://hardwear.io/document/rtos-

exploit-mitigation-blues-hardwear-io.pdf, 2017.
[83] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A. Clements. Chal-

lenges in firmware re-hosting, emulation, and analysis. ACM CSUR, 2021.
[84] T.-C. Yeh, G.-F. Tseng, and M.-C. Chiang. A fast cycle-accurate instruction set

simulator based on qemu and systemc for soc development. In IEEE MELECON,
2010.

[85] H. Ying, Y. Zhang, L. Han, Y. Cheng, J. Li, X. Ji, and W. Xu. Detecting buffer-
overflow vulnerabilities in smart grid devices via automatic static analysis. In
IEEE ITNEC, 2019.

[86] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar: A Framework to
Support Dynamic Security Analysis of Embedded Systems’ Firmwares. In NDSS,
2014.

[87] V. A. Zakharov. The equivalence problem for computational models: decidable
and undecidable cases. In Springer MCU, 2001.

[88] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun. Firm-afl: High-
throughput greybox fuzzing of iot firmware via augmented process emulation. In
USENIX Security, 2019.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

699

https://www.devicetree.org/specifications/
https://www.devicetree.org/specifications/
https://fail0verflow.com/blog/2012/unprogramming-intro/
https://fail0verflow.com/blog/2012/unprogramming-intro/
https://uefi.org/sites/default/files/resources/ACPI_6_2.pdf
https://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_113_Simplified Description of USB Device Enumeration.pdf
https://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_113_Simplified Description of USB Device Enumeration.pdf
https://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_113_Simplified Description of USB Device Enumeration.pdf
http://web.archive.org/web/20160304030848/http://queue.acm.org/unprogramming.cfm
http://web.archive.org/web/20160304030848/http://queue.acm.org/unprogramming.cfm
http://www.ovpworld.org/
https://hardwear.io/document/rtos-exploit-mitigation-blues-hardwear-io.pdf
https://hardwear.io/document/rtos-exploit-mitigation-blues-hardwear-io.pdf

Table 5: The embedded systems zoo.

System CPU OS Notable Peripherals
Canon Powershot ARM DryOS Image sensor,
G11 HDMI
Gen. 1 Apple PPC VxWorks WiFi, Ethernet,
Airport Express USB
Google Nest ARM Linux WiFi,
Thermostat E Temp. sensor
HP M551dn ARM WinCE Ethernet, motor,
Printer daughterboard
Microtik MIPS RouterOS Ethernet,
RouterBoard 192 speaker
Philips Hue AVR Custom ZigBee and
Lightbulb Bluetooth radios

A EXAMPLE EMBEDDED SYSTEMS
Table 5 describes embedded systems, their CPU architecture, oper-
ating system, and notable peripherals from each system.

B DETAILED SURVEY METHODOLOGY
B.1 Availability: Execution Engines
Our DTB corpus contains “manufacturer,model” tuples describing
the CPU used by each hardware platform. For example, the DTB
for the exynos5250 SoC indicates that it uses an ARM Cortex-A15
CPU (compatible = "arm,cortex-a15";). After we strip manu-
facturer name, this corresponds to QEMU’s cortex-a15 CPU.

Because strings describing the sameCPUmodelmay differ slightly,
we used fuzzy string matching (Levenshtein distance) after strip-
ping manufacturer name from compatible strings to make proces-
sor support determinations, e.g., QEMU’s mpc8541e_v11 processor
name matches the manufacturer-less PPC compatible string 8541.
Matches were manually reviewed for accuracy. Due to QEMU’s ex-
tremely limited support for ARM Cortex-M processors and SoCs
(only 2 SoCs), we do not consider the systems described by our SVD
corpus for this analysis.

We never assume that a core can be safely swapped for another of
the same ISAversion, e.g. replacing a cortex-a9with a cortex-a15
- both ARMv7-A CPUs. Despite QEMU’s lack of micro-architecture
behavior modeling, such a substitution can lead to a range of errors
- including illegal instructions, differing sets of configuration regis-
ters, and variations in MMU features.

B.2 Diversity: Unique Peripherals
For our DTB corpus, we extract compatible strings from each sys-
tem’s description. TheDevice Tree Standard indicates that the compatible
property of a node, a key whose value is a list of precedence-ordered
strings in the format "manufacturer,model", should be used for de-
vice driver selection. For example, when the Linux kernel parses a
device tree nodewith property compatible = "samsung,exynos3250-
pmu" it determines that it must load the device driver implemented
in drivers/soc/samsung/exynos-pmu.c. If a node’s compatible
property lists multiple strings, we consider only the first. This re-
flects the kernel’s selection precedence and ensures no physical pe-
ripheral is counted more than once. DTB nodes that do not contain

a compatible property are ignored. This conservative approach en-
sures we only count peripherals we are certain an OS can interact
with directly.

For the SVD corpus identifying unique peripherals is less straight-
forward as peripheral names need not directly correspond to driver
code. We consider two peripherals to be the same if they have the
same register layout within the memory mapped I/O (MMIO) inter-
face to the peripheral, raise the same interrupt signals, and have sim-
ilar names (normalized Levenshtein distance ≤ 0.20). Again, this is
a fairly conservative approach as divergences in register layouts and
interrupts necessitate different peripheral behavior but similarities
do not guarantee that two configurations refer to the same periph-
eral.

Because QEMU has no central table of supported peripherals, we
programmatically collect and clean the output of the -device help
flag for all board definitions for every surveyed architecture. OVPsim
peripheral counts are determined by available models advertised on
the project’s homepage [53].

B.3 Complexity: Driver SLOC as a Proxy
Note that submission of Device Tree files to the Linux kernel does
not obligate submission of source code for drivers named therein; we
observed that 20-58% of drivers were open source, depending on ar-
chitecture. When totaling SLOC per SoC, we use precise counts for
open-source drivers and the average SLOCper driver count (architecture-
specific) for closed-source drivers.

Manual analysis of a small subset (n = 20) of QEMU-implemented
peripherals demonstrated a positive correlation between driver and
peripheral implementation SLOC as shown in Fig. 4.

Figure 4: SLOC of Peripheral Model vs Device Driver.

Unlike our tabulation of peripheral diversity, here we consider
all compatible strings present, not just the first (preferred) per node.
This aids completeness, as we do not miss the opportunity to count
SLOC for any open drivers. SLOC is computed with pygount, a
Python library that supports C syntax and does not count comments
or empty lines.

Automating SLOCmeasurement for QEMUperipheral implemen-
tations is infeasible as they can be incomplete, tightly coupled with
QEMU-internal objects, or spread across hierarchical source files.
For example, hw/cpu/a9mpcore.c extends QEMU’s CPU class to

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

700

P2IM

KLEE S2E

FIE

Firmalice

FEMU
Prospect

Surrogates

Kammerstetter
 16

FirmUSB

QEMU

Costin 16 LuaQemu

Firmadyne

Avatar2

Inception

Charm

<2010 2010 2011 2012 2013 2014 2015 2016 2017 2018

Symbolic Abstractions

Hardware-in-the-loop Emulation

Emulation-only

Hybrid Approaches

Avatar

System Focus: Rehosting Other Targeted Devices: Desktop Type-I Type-II Type-III Type of code: Source BinaryTT

Pretender

2019 2020

PartEmu

Mousse

Unicorn BaseSafe

FirmCorn

FirmAFL

HALucinator

DICE

2021

Frankenstein

Laelaps

FirmAE

angr

Clements 21

Li 21

Figure 5: Timeline of Rehosting Systems.

Table 6: Total Peripherals Supported by QEMU.

Arch
v2.11.1
Total

v4.2.0
Total

v5.2.0
Total

ARM 227 321 337
ARM64 279 322 338
MIPS 153 186 192
PPC 160 210 216

add support for multiple Cortex-A9 peripherals (GIC, SCU, timers,
etc.).

B.4 Aside: Peripheral Support across QEMU
Versions

Looking at three major versions of QEMU approximately a year
apart, v2.11.1 (February 2018, latest in Ubuntu 18.04 repositories),
v4.2.0 (December 2019), and v5.2.0 (December 2020), Table 6 shows
very little increase relative to corpus peripheral diversity (see Table 2
in § 4).

Regardless of whichQEMUversionwe contrast § 4 results against,
the outcome is the same. Modern QEMU is not meaningfully more
capable of emulating embedded systems than it was 2.5 years ago.
Despite the increasing attention the research community has given
rehosting, on the HES front there has been no meaningful change.
Our Monte Carlo simulation demonstrated the problem of robust
peripheral support is intractable going forward, historical data com-
plements this conclusion by demonstrating an insignificant rate of
support increase.

C HISTORICAL TAXONOMY OF PRIOR
WORK

Table 4 does not capture temporal or evolutionary relationships be-
tween prior work. Toward this end, we present a timeline of rehost-
ing solutions and rehosting-related work in Fig. 5. Note that tar-
get system type, source dependecy, and primary goal (rehosting or
other) are encoded in the figure.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

701

	Abstract
	1 Introduction
	2 Rehosting for Whole-System Security Analysis
	2.1 Multi-Layer Vulnerabilities

	3 Challenges to Building Virtual Environments
	3.1 Obtaining Firmware
	3.2 Understanding Instruction Set Architectures
	3.3 Modeling Peripherals
	3.4 Evaluating Fidelity

	4 Quantifying the Difficulty of Embedded Hardware Emulation
	4.1 Datasets
	4.2 Approach
	4.3 Availability: Virtual Execution Engines
	4.4 Diversity: Unique Peripherals
	4.5 Complexity: Driver SLOC as a Proxy
	4.6 Tractability: Simulation of Emulating Hardware Systems

	5 The Case for Rehosting
	5.1 Rehosting Goals
	5.2 State of the Art
	5.3 Effects of Different System Types

	6 The Rehosting Process
	6.1 Iterative Refinement

	7 Rehosting Roadmap
	7.1 Creating Virtual Execution Engines
	7.2 Widespread Adoption of Modeling Standards
	7.3 Handling Peripherals
	7.4 Formalizing Fidelity
	7.5 Rehosting of Complex Embedded Systems

	8 Conclusion
	Acknowledgments
	References
	A Example Embedded Systems
	B Detailed Survey Methodology
	B.1 Availability: Execution Engines
	B.2 Diversity: Unique Peripherals
	B.3 Complexity: Driver SLOC as a Proxy
	B.4 Aside: Peripheral Support across QEMU Versions

	C Historical Taxonomy of Prior Work

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 45.76, 74.18 Width 249.76 Height 93.42 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 45.7574 74.1812 249.759 93.4213

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 15
 0
 1

 1

 HistoryList_V1
 qi2base

