RSAC Security Scholar

Firmware Security on Commodity Hardware 2017 MITRE Embedded CTF

Tiemoko Ballo Carnegie Mellon University, Information Networking Institute

Problem Statement and Goals

- **Goal** design and implement a bootloader for secure firmware distribution as part of the 2017 MITRE Embedded CTF, the only attack-and-defense CTF that both uses real hardware and requires teams to build targets (invite-only, 10 universities).
- Functional Requirements on a resource-constrained microcontroller (ATMEGA 1284P) without dedicated security hardware, the system must:
 - Support firmware update

- Allow memory readback for an authenticated technician
- Disallow firmware version downgrade
- Security Requirements despite an adversary with physical access and full source code, the design must ensure:
 - Secrets can't be read from device memory or a firmware image (confidentiality)
 - Bootloader only accepts factory-issued firmware (authentication)

Approach

- Well-vetted Cryptographic Algorithms:
 - AES-256-CBC to protect firmware pages
 - HMAC-SHA1 for integrity and data-origin authentication
- On-boot Verification:
 - SHA1/HMAC-SHA1 chained measurement across firmware pages
 - Integrity check of 30KB firmware with only 16KB of SRAM
 - Measurement stored in lock-bit protected memory
 - Measurement verified on boot, firmware erased if check fails
- ELF Section Relocation to Alleviate Memory Constraints:
 - Portability: static libraries moved to lower 64KB of flash, permitting AVR standard 16-bit pointers without re-write
 - Flexibility: some privileged functions moved to app memory, key material passed on SRAM stack and erased after use
- Introducing Noise for Side-channel Resilience:
 - Spurious per-round en/decrypt operations on inverse data
 - Power trace noise thwarts default AES timing profiles
- Unpredictable Checks for Fault Injection Resilience:

Firmware Measurement

Update Protocol

- Multiple complementary checks for all critical branches
- Pseudo-random delay (inlined spin-wait) between checks

Results

- Design won "Iron Flag" award for withstanding all attacks (software exploitation, side-channel key extraction, and fault injection) for the entirety of the competition's 6 week attack phase despite attackers with full source code and physical access.
- Placed 3rd overall, 19 attack flags collected across 5 teams and all 6 categories.
- Lessons for Future Designs:
 - ECC combines benefits of asymmetric scheme (no signing private key on device) with key size comparable to symmetric scheme
 - Switch from on-board oscillator to microcontroller's internal clock during sensitive operations for robust clock glitching defense
 - For general purpose devices, ensure that any code relocation does not overlap with interrupt vector table
- Acknowledgements:
 - Competition Advisor: Professor Martin Charlisle
 - Competition Team Members: Surbhi Shah, Mark Horvath, Saurabh Sharma, Karthic Palaniappan, Pouria Pezeshkian

