The Center for Cyber Defenders

Expanding computer security knowledge

STM-based Introspection

A Platform for Analysis of Low-level Security Solutions Min Je Jung, Georgia Institute of Technology Tiemoko Ballo, Carnegie Mellon University

Project Mentors: Rob Bell, Org.5834 and Russell Graves, Org. 6612

Problem Statement:

System Management Mode (SMM) is the most privileged mode of execution on x86(64) architecture. SMM code can bypass and subvert hypervisor based security solutions. In an effort to prevent SMM exploitation, Intel introduced the STM (SMI Transfer Monitor) – an SMM hypervisor.

Though the first STM implementation was introduced in August 2015, little documentation exists and the security implications are not yet well understood. We seek to investigate using STM technology to

Execution Modes for Virtualized x86

(Jiewen Yao, Vincent J. Zimmer, "A Tour Beyond BIOS Launching a STM to Monitor SMM in EFI Developer Kit II", August 2015)

Results:

Implemented VMM handlers for RDTSCP and RDTSC instruction support, giving the

debug and analyze low-level security solutions.

The MinnowBoard Turbot (opendisplaycase.com)

Objectives and Approach:

- Build upon Intel's base hypervisor
- Develop and test on open-source hardware (MinnowBoard Turbot)
- Characterize STM capability
- Invent novel and reliable ways to transfer control to the STM at chosen points in time
- Implement introspection and debugging

hypervisor control over timing information presented to guest VMs

- Integrated an open-source disassembler (diStorm3) that runs in the STM environment and supports abstract representations of instructions/operands
- Extended introspection STM functionally with a new command to disassemble userspecified regions of memory and output the results over high speed serial
- Will investigate options for systematically tracking of control flow and code coverage from the STM

(SIM-0)00000001 (01)	ee	OUT DX, AL
(STM-0)00000002 (02)	Zect	IRET
(STM-0)00000004 (03)	0153e3	RCPPS XMM4, XMM3
(STM-0)00000007 (03)	11406d	ADC [RAX+0x6d], EAX
(STM-0)0000000a (01)	c4	DB 0xc4
(STM-0)0000000b (01)	8e	DB 0x8e
(STM-0)0000000c (01)	fa	CLI
(STM-0)0000000d (02)	7399	JAE 0xfffffffffffffa8
(STM-0)0000000f (02)	0132	ADD [RDX], ESI
(STM-0)00000011 (01)	8e	DB 0x8e
(STM-0)00000012 (02)	7dff	JGE 0x13
(STM-0)00000014 (08)	264bf71d86f02740	NEG OWORD [RIP+0x4027f086]
(STM-0)0000001c (07)	8b9421f2c6ac07	MOV EDX, [RCX+0x7acc6f2]
(STM-0)00000023 (01)	ee	OUT DX, AL
(STM-0)00000024 (01)	9b	WAIT
(STM-0)00000025 (06)	43a9195efe4b	TEST EAX, 0x4bfe5e19
(STM-0)0000002b (01)	c7	DB 0xc7
(STM-0)0000002c (05)	3dd7fad31d	CMP EAX, 0x1dd3fad7
(STM-0)00000031 (07)	0feabf6d6bd28d	PMINSW MM7, [RDI-0x722d9493]
(STM-0)00000038 (02)	da3e	FIDIVR DWORD [RSI]
(STM-0)0000003a (02)	0927	OR [RDI], ESP
(STM-0)0000003c (02)	1ca7	SBB AL, 0xa7
(STM-0)0000003e (01)	ea	DB 0xea
(STM-0)0000003f (02)	eb03	JMP 0x44
(STM-0)00000041 (05)	bc65e6aac7	MOV ESP. 0xc7aae665
(STM-0)00000046 (02)	b15b0)00000048 (01) c5	DB 0xc5
(STM-0)00000049 (05)	bf86e75bc7	MOV EDI. 0xc75be786
(STM-0)0000004e (01)	c9	LEAVE
(STM-0)0000004f (01)	5b	POP RBX
(STM-0)00000050 (02)	84f4	TEST AH. DH
(STM-0)00000052 (04)	26c28bd5	RET 0xd58b

High Speed Serial Disassembly Output from the STM

Impact and Benefits:

functionality within the STM

- Implement a remote command interface for the STM over high speed serial
- Use the introspection STM to evaluate OS use of Intel's HW security features
- Gain and document knowledge of new Intel security mechanisms and their implementation in modern operating systems
- Create a security research platform that provides unparalleled visibility into low-level Intel security mechanisms

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-XXXXC.

